
MATH 111 Spring 2006

Practice Test 2 - Solutions

1. Read the textbook!

2. (a) If n is an integer such that 5|(n− 1), then n ≡ 1 (mod 5). Then n3 +n− 2 ≡
13 + 1 − 2 ≡ 0 (mod 5). This implies that 5|(n3 + n − 2). (This is a direct
proof.)
Another proof: If n is an integer such that 5|(n−1), then n−1 = 5k for some
k ∈ Z. Then n = 5k + 1, therefore n3 + n − 2 = (5k + 1)3 + (5k + 1) − 2 =
125k3+75k2+15k+1+5k+1−2 = 125k3+75k2+20k = 5(25k3+15k2+4k).
Since 25k3 + 15k2 + 4k ∈ Z, 5|(n3 + n − 2). (This is also a direct proof.)

(b) Assume that log
3
2 is rational. Then log

3
2 =

m

n
for some m, n ∈ Z, n > 0.

Then 3
m

n = 2, so 3m = 2n. Since n > 0, 3m = 2n > 1, so m > 0. Since
3 ≡ 1 (mod 2), 3m ≡ 1 (mod 2), so 3m is odd. However, 2n = 2 · 2n−1 is
even. We get a contradiction. Therefore log

3
2 is irrational. (This is a proof

by contradiction.)

(c) We will prove this statement by contrapositive. Assume that n is odd. Then
n = 2k+1 for some k ∈ Z. Then 7n2+4 = 7(2k+1)2+4 = 7(4k2+4k+1)+4 =
28k2 + 28k + 11 = 2(14k2 + 14k + 5) + 1. Since 14k2 + 14k + 5 ∈ Z, 7n2 + 4
is odd.

(d) First we will prove that if 3|(mn) then 3|m or 3|n. We will prove this by
contrapositive, namely, we will prove that if 3 6 |m and 3 6 |n, then 3 6 |(mn).
If 3 6 |m, then m = 3k + 1 or m = 3k + 2 for some k ∈ Z. If 3 6 |n, then
n = 3l + 1 or n = 3l + 2 for some l ∈ Z. Thus we have four cases:
Case I: m = 3k+1, n = 3l+1. Then mn = (3k+1)(3l+1) = 9kl+3k+3l+1 =
3(3kl + k + l) + 1. Since 3kl + k + l ∈ Z, 3 6 |(mn).
Case II: m = 3k+1, n = 3l+2. Then mn = (3k+1)(3l+2) = 9kl+6k+3l+2 =
3(3kl + 2k + l) + 2. Since 3kl + 2k + l ∈ Z, 3 6 |(mn).
Case III: m = 3k + 2, n = 3l + 1. Then mn = (3k + 2)(3l + 1) = 9kl + 3k +
6l + 2 = 3(3kl + k + 2l) + 2. Since 3kl + k + 2l ∈ Z, 3 6 |(mn).
Case IV: m = 3k + 2, n = 3l + 2. Then mn = (3k + 2)(3l + 2) = 9kl + 6k +
6l + 4 = 3(3kl + 2k + 2l + 1) + 1. Since 3kl + 2k + 2l + 1 ∈ Z, 3 6 |(mn).
Next we will prove that if 3|m or 3|n, then 3|(mn). Here we have two cases:
Case I: 3|m. Then m = 3k for some k ∈ Z. Then mn = 3kn. Since kn ∈ Z,
3|(mn).
Case II: 3|n. Then n = 3l for some l ∈ Z. Then mn = m3l = 3ml. Since
ml ∈ Z, 3|(mn).
(This direction we proved directly.)

(e) Assume that there exist a nonzero rational number x and an irrational number

1



y such that xy is rational. Then x =
k

l
for some k, l ∈ Z, k 6= 0 and l 6= 0,

and xy =
m

n
for some m, n ∈ Z, n 6= 0. Then y =

xy

x
=

m

n

k

l

=
ml

nk
. Since

ml, nk ∈ Z and nk 6= 0, y is rational. Contradiction. (This is a proof by
contradiction.)

(f) We will prove this statement by contrapositive. Namely, we will assume that
a|b or a|c and we will show that a|(bc). If a|b, then b = ak for some k ∈ Z,
and bc = akc. Since kc ∈ Z, a|(bc). If a|c, then c = ak for some k ∈ Z, and
bc = bak = abk. Since bk ∈ Z, a|(bc).

3. (a) This statement is true. For example, if a = −1, then for every real number
b, we have b2 ≥ 0 ≥ −1, so b2 ≥ a.

(b) This statement is false. For any integer a, either a ≤ 4 or a ≥ 5. If a ≤ 4,
then a3 + 2a + 3 ≤ 64 + 8 + 3 = 75 < 100, so a3 + 2a + 3 6= 100. If a ≥ 5,
then a3 + 2a + 3 ≥ 125 + 10 + 3 = 138 > 100, so a3 + 2a + 3 6= 100.

(c) This statement is true. For any sets A and B, let C = A∪B. Then A∪C =
A ∪ A ∪ B = A ∪ B and B ∪ C = B ∪ A ∪ B = A ∪ B, so A ∪ C = B ∪ C.

(d) This statement is false. For example, if A = {1}, B = {2}, C = {1, 2},
D = {2, 3}, then A ⊂ C, B ⊂ D, and A ∩ B = ∅, however, C ∩ D 6= ∅.

(e) This statement if true. Suppose that A ⊂ C, B ⊂ D, C ∩ D = ∅, but
A ∩ B 6= ∅. Then there is an element x ∈ A ∩ B, so x ∈ A and x ∈ B. Since
A ⊂ C and B ⊂ D, it follows that x ∈ C and x ∈ D. Then x ∈ C ∩ D, thus
C ∩ D 6= ∅. We get a contradiction.

4. (a) This set is not a relation from A to B because it is not a subset of A × B:
e.g. (a, 1) 6∈ A × B.

(b) This set is a relation from A to B since it is a subset of A × B (it is easy to
see that each element of this set is of required form).

5. Determine which of the following relations are reflexive; symmetric; transitive.

(a) R is not reflexive because e.g. (1, 1) 6∈ R since 1 + 1 6= 0.
R is symmetric because if (a, b) ∈ R, then a + b = 0, then b + a = 0, so
(b, a) ∈ R.
R is not transitive because e.g. (1,−1) ∈ R and (−1, 1) ∈ R, however,
(1, 1) 6∈ R.

(b) R is reflexive because for any a ∈ R,
a

a
= 1 ∈ Q, so (a, a) ∈ R.

R is not symmetric because e.g. (0, 1) ∈ R since
0

1
∈ Q, but (1, 0) 6∈ R since

1

0
is undefined (and thus is not an element of Q).

R is transitive because if (a, b) ∈ R and (b, c) ∈ R, then
a

b
∈ Q and

b

c
∈ Q.

2



Since the product of two rational numbers is rational (see proof below),
a

c
=

a

b
·
b

c
∈ Q, thus (a, c) ∈ R.

Proof that the product of two rational numbers is rational: let x, y ∈ Q,

then x =
k

l
and y =

m

n
for some k, l, m, n ∈ Z, l 6= 0, n 6= 0. Then

xy =
k

l
·
m

n
=

km

ln
. Since km, ln ∈ Z and ln 6= 0, xy ∈ Q.

(c) R is not reflexive because (0, 0) 6∈ R since 0 · 0 6> 0.
R is symmetric because if (a, b) ∈ R, then ab > 0, then ba > 0, so (b, a) ∈ R.
R is transitive because if (a, b) ∈ R and (b, c) ∈ R, then ab > 0 and bc > 0.
Therefore acb2 > 0. We know that b2 ≥ 0 for all b ∈ R. Since acb2 6= 0,
b2 6= 0. Therefore b2 > 0, thus ac > 0.

(d) R is reflexive since for any a ∈ Z, a ≡ a (mod 3), thus (a, a) ∈ R.
R is symmetric because if (a, b) ∈ R, then a ≡ b (mod 3), then b ≡ a (mod 3),
thus (b, a) ∈ R.
R is transitive because if (a, b) ∈ R and (b, c) ∈ R, then a ≡ b (mod 3) and
b ≡ c (mod 3), therefore a ≡ c (mod 3), thus (a, c) ∈ R.

(e) R is not reflexive because e.g. (1, 1) 6∈ R since 1 6> 1.
R is not symmetric because e.g. (2, 1) ∈ R but (1, 2) 6∈ R since 2 > 1 but
1 6> 2.
R is transitive because if if (a, b) ∈ R and (b, c) ∈ R, then a > b and b > c,
then a > c, thus (a, c) ∈ R.
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