Practice Test 2 - Solutions

1. Read the textbook!

2. (a) If n is an integer such that 5|(n-1), then $n \equiv 1 \pmod{5}$. Then $n^3 + n - 2 \equiv 1^3 + 1 - 2 \equiv 0 \pmod{5}$. This implies that $5|(n^3 + n - 2)$. (This is a direct proof.) Another proof: If n is an integer such that 5|(n-1), then n-1 = 5k for some $k \in \mathbb{Z}$. Then n = 5k + 1, therefore $n^3 + n - 2 = (5k + 1)^3 + (5k + 1) - 2 = 125k^3 + 75k^2 + 15k + 1 + 5k + 1 - 2 = 125k^3 + 75k^2 + 20k = 5(25k^3 + 15k^2 + 4k)$.

Since $25k^3 + 15k^2 + 4k \in \mathbb{Z}$, $5|(n^3 + n - 2)$. (This is also a direct proof.)

- (b) Assume that $\log_3 2$ is rational. Then $\log_3 2 = \frac{m}{n}$ for some $m, n \in \mathbb{Z}, n > 0$. Then $3^{\frac{m}{n}} = 2$, so $3^m = 2^n$. Since n > 0, $3^m = 2^n > 1$, so m > 0. Since $3 \equiv 1 \pmod{2}$, $3^m \equiv 1 \pmod{2}$, so 3^m is odd. However, $2^n = 2 \cdot 2^{n-1}$ is even. We get a contradiction. Therefore $\log_3 2$ is irrational. (This is a proof by contradiction.)
- (c) We will prove this statement by contrapositive. Assume that n is odd. Then n = 2k+1 for some $k \in \mathbb{Z}$. Then $7n^2+4 = 7(2k+1)^2+4 = 7(4k^2+4k+1)+4 = 28k^2+28k+11 = 2(14k^2+14k+5)+1$. Since $14k^2+14k+5 \in \mathbb{Z}$, $7n^2+4$ is odd.
- (d) First we will prove that if 3|(mn) then 3|m or 3|n. We will prove this by contrapositive, namely, we will prove that if 3 /m and 3 /n, then 3 /(mn). If 3 /m, then m = 3k + 1 or m = 3k + 2 for some $k \in \mathbb{Z}$. If 3 /n, then n = 3l + 1 or n = 3l + 2 for some $l \in \mathbb{Z}$. Thus we have four cases: Case I: m = 3k+1, n = 3l+1. Then mn = (3k+1)(3l+1) = 9kl+3k+3l+1 =3(3kl + k + l) + 1. Since $3kl + k + l \in \mathbb{Z}, 3 \not (mn)$. <u>Case II:</u> m = 3k+1, n = 3l+2. Then mn = (3k+1)(3l+2) = 9kl+6k+3l+2 =3(3kl+2k+l)+2. Since $3kl+2k+l \in \mathbb{Z}, 3 \not (mn)$. 6l + 2 = 3(3kl + k + 2l) + 2. Since $3kl + k + 2l \in \mathbb{Z}, 3 \not (mn)$. <u>Case IV:</u> m = 3k + 2, n = 3l + 2. Then mn = (3k + 2)(3l + 2) = 9kl + 6k + 6k6l + 4 = 3(3kl + 2k + 2l + 1) + 1. Since $3kl + 2k + 2l + 1 \in \mathbb{Z}, 3 \not (mn)$. Next we will prove that if 3|m or 3|n, then 3|(mn). Here we have two cases: <u>Case I:</u> 3|m. Then m = 3k for some $k \in \mathbb{Z}$. Then mn = 3kn. Since $kn \in \mathbb{Z}$, 3|(mn).<u>Case II:</u> 3|n. Then n = 3l for some $l \in \mathbb{Z}$. Then mn = m3l = 3ml. Since $ml \in \mathbb{Z}, 3|(mn).$

(This direction we proved directly.)

(e) Assume that there exist a nonzero rational number x and an irrational number

y such that xy is rational. Then $x = \frac{k}{l}$ for some $k, l \in \mathbb{Z}, k \neq 0$ and $l \neq 0$, and $xy = \frac{m}{n}$ for some $m, n \in \mathbb{Z}, n \neq 0$. Then $y = \frac{xy}{x} = \frac{\frac{m}{n}}{\frac{k}{l}} = \frac{ml}{nk}$. Since $ml, nk \in \mathbb{Z}$ and $nk \neq 0, y$ is rational. Contradiction. (This is a proof by contradiction.)

- (f) We will prove this statement by contrapositive. Namely, we will assume that a|b or a|c and we will show that a|(bc). If a|b, then b = ak for some $k \in \mathbb{Z}$, and bc = akc. Since $kc \in \mathbb{Z}$, a|(bc). If a|c, then c = ak for some $k \in \mathbb{Z}$, and bc = bak = abk. Since $bk \in \mathbb{Z}$, a|(bc).
- 3. (a) This statement is true. For example, if a = -1, then for every real number b, we have $b^2 \ge 0 \ge -1$, so $b^2 \ge a$.
 - (b) This statement is false. For any integer *a*, either $a \le 4$ or $a \ge 5$. If $a \le 4$, then $a^3 + 2a + 3 \le 64 + 8 + 3 = 75 < 100$, so $a^3 + 2a + 3 \ne 100$. If $a \ge 5$, then $a^3 + 2a + 3 \ge 125 + 10 + 3 = 138 > 100$, so $a^3 + 2a + 3 \ne 100$.
 - (c) This statement is true. For any sets A and B, let $C = A \cup B$. Then $A \cup C = A \cup A \cup B = A \cup B$ and $B \cup C = B \cup A \cup B = A \cup B$, so $A \cup C = B \cup C$.
 - (d) This statement is false. For example, if $A = \{1\}$, $B = \{2\}$, $C = \{1, 2\}$, $D = \{2, 3\}$, then $A \subset C$, $B \subset D$, and $A \cap B = \emptyset$, however, $C \cap D \neq \emptyset$.
 - (e) This statement if true. Suppose that $A \subset C$, $B \subset D$, $C \cap D = \emptyset$, but $A \cap B \neq \emptyset$. Then there is an element $x \in A \cap B$, so $x \in A$ and $x \in B$. Since $A \subset C$ and $B \subset D$, it follows that $x \in C$ and $x \in D$. Then $x \in C \cap D$, thus $C \cap D \neq \emptyset$. We get a contradiction.
- 4. (a) This set is not a relation from A to B because it is not a subset of $A \times B$: e.g. $(a, 1) \notin A \times B$.
 - (b) This set is a relation from A to B since it is a subset of $A \times B$ (it is easy to see that each element of this set is of required form).
- 5. Determine which of the following relations are reflexive; symmetric; transitive.
 - (a) R is not reflexive because e.g. (1, 1) ∉ R since 1 + 1 ≠ 0.
 R is symmetric because if (a, b) ∈ R, then a + b = 0, then b + a = 0, so (b, a) ∈ R.
 R is not transitive because e.g. (1, -1) ∈ R and (-1, 1) ∈ R, however, (1, 1) ∉ R.

(b) R is reflexive because for any $a \in \mathbb{R}$, $\frac{a}{a} = 1 \in \mathbb{Q}$, so $(a, a) \in R$.

R is not symmetric because e.g. $(0,1) \in R$ since $\frac{0}{1} \in \mathbb{Q}$, but $(1,0) \notin R$ since $\frac{1}{0}$ is undefined (and thus is not an element of \mathbb{Q}).

R is transitive because if $(a, b) \in R$ and $(b, c) \in R$, then $\frac{a}{b} \in \mathbb{Q}$ and $\frac{b}{c} \in \mathbb{Q}$.

Since the product of two rational numbers is rational (see proof below), $\frac{a}{c} =$

 $\frac{a}{b} \cdot \frac{b}{c} \in \mathbb{Q}, \text{ thus } (a,c) \in R.$ Proof that the product of two rational numbers is rational: let $x, y \in \mathbb{Q},$ then $x = \frac{k}{l}$ and $y = \frac{m}{n}$ for some $k, l, m, n \in \mathbb{Z}, l \neq 0, n \neq 0$. Then $xy = \frac{k}{l} \cdot \frac{m}{n} = \frac{km}{ln}.$ Since $km, ln \in \mathbb{Z}$ and $ln \neq 0, xy \in \mathbb{Q}.$

- (c) R is not reflexive because $(0,0) \notin R$ since $0 \cdot 0 \neq 0$. R is symmetric because if $(a,b) \in R$, then ab > 0, then ba > 0, so $(b,a) \in R$. R is transitive because if $(a,b) \in R$ and $(b,c) \in R$, then ab > 0 and bc > 0. Therefore $acb^2 > 0$. We know that $b^2 \ge 0$ for all $b \in \mathbb{R}$. Since $acb^2 \neq 0$, $b^2 \neq 0$. Therefore $b^2 > 0$, thus ac > 0.
- (d) R is reflexive since for any a ∈ Z, a ≡ a (mod 3), thus (a, a) ∈ R. R is symmetric because if (a, b) ∈ R, then a ≡ b (mod 3), then b ≡ a (mod 3), thus (b, a) ∈ R. R is transitive because if (a, b) ∈ R and (b, c) ∈ R, then a ≡ b (mod 3) and b ≡ c (mod 3), therefore a ≡ c (mod 3), thus (a, c) ∈ R.
- (e) R is not reflexive because e.g. $(1,1) \notin R$ since $1 \neq 1$. R is not symmetric because e.g. $(2,1) \in R$ but $(1,2) \notin R$ since 2 > 1 but $1 \neq 2$.

R is transitive because if if $(a, b) \in R$ and $(b, c) \in R$, then a > b and b > c, then a > c, thus $(a, c) \in R$.