Practice Test 2

Note: the actual test will consist of six questions.

1. Review all terms, notations, and types of proofs in chapters 0-6 and sections 7.1 and 7.2.
2. Prove the following statements. Indicate what type of proof (direct, by contrapositive, or by contradiction) you used.
(a) If n is an integer such that $5 \mid(n-1)$, then $5 \mid\left(n^{3}+n-2\right)$.
(b) The number $\log _{3} 2$ is irrational.
(c) Let $n \in \mathbb{Z}$. If $7 n^{2}+4$ is even, then n is even.
(d) Let $m, n \in \mathbb{Z}$. Then $3 \mid(m n)$ if and only if $3 \mid m$ or $3 \mid n$.
(e) The product of a nonzero rational number and an irrational number is irrational.
(f) Let $a, b, c \in \mathbb{Z}$. If $a \not \backslash(b c)$, then $a \not \backslash b$ and $a \nmid c$.
3. Prove or disprove the following statements.
(a) There exists a nonzero integer a such that for every real number $b, b^{2} \geq a$.
(b) There exists an integer a such that $a^{3}+2 a+3=100$.
(c) For any sets A and B there exists a set C such that $A \cup C=B \cup C$.
(d) Let A, B, C, and D be sets such that $A \subset C$ and $B \subset D$. If $A \cap B=\emptyset$, then $C \cap D=\emptyset$.
(e) Let A, B, C, and D be sets such that $A \subset C$ and $B \subset D$. If $C \cap D=\emptyset$, then $A \cap B=\emptyset$.
4. Let $A=\{1,2,3,4\}$ and $B=\{a, b, c\}$. Which of the following are relations from A to B ?
(a) $\{(a, 1),(b, 2),(c, 3)\}$
(b) $\{(1, b),(1, c),(3, a),(4, b)\}$
5. Determine which of the following relations are reflexive; symmetric; transitive.
(a) Relation R on set \mathbb{Z} defined by $(a, b) \in R$ iff $a+b=0$.
(b) Relation R on set \mathbb{R} defined by $(a, b) \in R$ iff $\frac{a}{b} \in \mathbb{Q}$.
(c) Relation R on set \mathbb{R} defined by $(a, b) \in R$ iff $a b>0$.
(d) Relation R on set \mathbb{Z} defined by $(a, b) \in R$ iff $a \equiv b(\bmod 3)$.
(e) Relation R on set \mathbb{Q} defined by $(a, b) \in R$ iff $a>b$.
