Test 2, extra credit problem.

Prove that for any positive integer n,

$$1 < \frac{1}{n+1} + \frac{1}{n+2} + \ldots + \frac{1}{3n+1} < 2$$

Proof.

First we will try to estimate the sum by estimating each term. We see that each term is between $\frac{1}{3n+1}$ and $\frac{1}{n+1}$, and there are 2n+1 terms, therefore the sum is between $\frac{2n+1}{3n+1}$ and $\frac{2n+1}{n+1}$. The lower bound doesn't help us, but from the upper bound we see that the sum is less than $\frac{2n+2}{n+1} = 2$.

To show that the sum is bigger than 1, we will use Mathematical induction.

Basis step. For n = 1 we have to check that $1 < \frac{1}{2} + \frac{1}{3} + \frac{1}{4}$. We calculate $\frac{1}{2} + \frac{1}{3} + \frac{1}{4} = \frac{13}{12}$, and we see that this is indeed bigger than 1.

Inductive step. Assume the inequality holds for n = k, i.e.

$$1 < \frac{1}{k+1} + \frac{1}{k+2} + \ldots + \frac{1}{3k+1}.$$
 (1)

We want to prove that it holds for n = k + 1:

$$1 < \frac{1}{(k+1)+1} + \frac{1}{(k+1)+2} + \ldots + \frac{1}{3(k+1)+1},$$

or

$$1 < \frac{1}{k+2} + \frac{1}{k+3} + \ldots + \frac{1}{3k+1} + \frac{1}{3k+2} + \frac{1}{3k+3} + \frac{1}{3k+4}.$$
 (2)

Compare (1) and (2), and notice that we "lost" the term $\frac{1}{k+1}$ but "gained" 3 terms: $\frac{1}{3k+2}$, $\frac{1}{3k+3}$, and $\frac{1}{3k+4}$. If we can show that we gained more than we lost, then the new sum (for k + 1) is bigger than 1. Thus we want to show that

$$\frac{1}{3k+2} + \frac{1}{3k+3} + \frac{1}{3k+4} > \frac{1}{k+1}$$

The following inequalities are equivalent:

$$\frac{1}{3k+2} + \frac{1}{3k+3} + \frac{1}{3k+4} > \frac{3}{3k+3}$$
$$\frac{1}{3k+2} + \frac{1}{3k+4} > \frac{2}{3k+3}$$
$$\frac{6k+6}{(3k+2)(3k+4)} > \frac{2}{3k+3}$$
$$\frac{3k+3}{(3k+2)(3k+4)} > \frac{1}{3k+3}$$
$$(3k+3)^2 > (3k+2)(3k+4)$$
$$9k^2 + 18k+9 > 9k^2 + 18k+8,$$

and the last one is obviously true.