Test 2, extra credit problem.
Prove that for any positive integer n,
$1<\frac{1}{n+1}+\frac{1}{n+2}+\ldots+\frac{1}{3 n+1}<2$.
Proof.
First we will try to estimate the sum by estimating each term. We see that each term is between $\frac{1}{3 n+1}$ and $\frac{1}{n+1}$, and there are $2 n+1$ terms, therefore the sum is between $\frac{2 n+1}{3 n+1}$ and $\frac{2 n+1}{n+1}$. The lower bound doesn't help us, but from the upper bound we see that the sum is less than $\frac{2 n+2}{n+1}=2$.
To show that the sum is bigger than 1, we will use Mathematical induction.
Basis step. For $n=1$ we have to check that $1<\frac{1}{2}+\frac{1}{3}+\frac{1}{4}$. We calculate $\frac{1}{2}+\frac{1}{3}+\frac{1}{4}=\frac{13}{12}$, and we see that this is indeed bigger than 1 .

Inductive step. Assume the inequality holds for $n=k$, i.e.

$$
\begin{equation*}
1<\frac{1}{k+1}+\frac{1}{k+2}+\ldots+\frac{1}{3 k+1} \tag{1}
\end{equation*}
$$

We want to prove that it holds for $n=k+1$:

$$
1<\frac{1}{(k+1)+1}+\frac{1}{(k+1)+2}+\ldots+\frac{1}{3(k+1)+1},
$$

or

$$
\begin{equation*}
1<\frac{1}{k+2}+\frac{1}{k+3}+\ldots+\frac{1}{3 k+1}+\frac{1}{3 k+2}+\frac{1}{3 k+3}+\frac{1}{3 k+4} . \tag{2}
\end{equation*}
$$

Compare (1) and (2), and notice that we "lost" the term $\frac{1}{k+1}$ but "gained" 3 terms: $\frac{1}{3 k+2}, \frac{1}{3 k+3}$, and $\frac{1}{3 k+4}$. If we can show that we gained more than we lost, then the new sum (for $k+1$) is bigger than 1 . Thus we want to show that

$$
\frac{1}{3 k+2}+\frac{1}{3 k+3}+\frac{1}{3 k+4}>\frac{1}{k+1} .
$$

The following inequalities are equivalent:

$$
\begin{gathered}
\frac{1}{3 k+2}+\frac{1}{3 k+3}+\frac{1}{3 k+4}>\frac{3}{3 k+3} \\
\frac{1}{3 k+2}+\frac{1}{3 k+4}>\frac{2}{3 k+3} \\
\frac{6 k+6}{(3 k+2)(3 k+4)}>\frac{2}{3 k+3} \\
\frac{3 k+3}{(3 k+2)(3 k+4)}>\frac{1}{3 k+3} \\
(3 k+3)^{2}>(3 k+2)(3 k+4) \\
9 k^{2}+18 k+9>9 k^{2}+18 k+8,
\end{gathered}
$$

and the last one is obviously true.

