MATH 111 Test 2 - Solutions

1. Let $x \in \mathbb{Z}$. Prove that if $x^3 + x^2 + x$ is odd, then x is odd. What type of proof (direct, by contrapositive, or by contradiction) did you use?

We will prove this statement by contrapositive. If x is even, then x = 2k for some $k \in \mathbb{Z}$. Then $x^3 + x^2 + x = (2k)^3 + (2k)^2 + 2k = 8k^3 + 4k^2 + 2k = 2(4k^3 + 2k^2 + k)$. Since $4k^3 + 2k^2 + k \in \mathbb{Z}$, $x^3 + x^2 + x$ is even.

2. Prove or disprove.

The sum of two irrational numbers is irrational.

The statement is false. Counterexample: $\sqrt{2} + (-\sqrt{2}) = 0$. We know that $\sqrt{2}$ is irrational. Below we show that $-\sqrt{2}$ is also irrational. However, $0 = \frac{0}{1}$ is rational.

We will show that $-\sqrt{2}$ is irrational by contradiction. Suppose it is rational, then $-\sqrt{2} = \frac{m}{n}$ for some $m, n \in \mathbb{Z}, n \neq 0$. Then $\sqrt{2} = -\frac{m}{n} = \frac{-m}{n}$. Since $m, n \in \mathbb{Z}$ and $n \neq 0, \sqrt{2}$ is rational. However, this is not the case. Therefore $-\sqrt{2}$ is irrational.

3. Prove or disprove.

The sum of a rational number and an irrational number is irrational.

The statement is true. We will prove it by contradiction, namely, suppose there exist a rational number r and an irrational number x such that r + x is rational. Then $r = \frac{k}{l}$ and $r + x = \frac{m}{n}$ for some $k, l, m, n \in \mathbb{Z}, l \neq 0, n \neq 0$. Then $x = (r + x) - r = \frac{m}{n} - \frac{k}{l} = \frac{ml - nk}{nl}$. Since $ml - nk \in \mathbb{Z}$ and $nl \neq 0$, x is rational. We get a contradiction.

4. Prove or disprove.

Let A, B, and C be sets. If $A \cup B = A \cup C$, then B = C. The statement is false. Counterexample: $A = \{1, 2, 3\}, B = \{1\}, C = \{2\}$. Then $A \cup B = \{1, 2, 3\} = A \cup C$, but $B \neq C$.

5. Let $A = \{1, 2, 3, 4\}$. Give an example of a relation on A that is symmetric but not reflexive.

 $R = \{(1,2), (2,1)\}$ is symmetric (because for any $(a,b) \in R$, $(b,a) \in R$), but not reflexive (because e.g. $(1,1) \notin R$).

- 6. Let R be the relation on \mathbb{Z} defined by $(a, b) \in R$ iff a + b < 5.
 - (a) Is R reflexive?

No, because e.g. $(3,3) \notin R$ since $3+3 \notin 5$.

(b) Is R symmetric?

Yes, because if $(a, b) \in R$, then a + b < 5, then b + a < 5, so $(b, a) \in R$.

(c) Is R transitive?
No, because e.g. (2,1) ∈ R and (1,3) ∈ R, but (2,3) ∉ R since 2+1 < 5, 1+3 < 5, but 2+3 ≤ 5.

7. Prove or disprove.

The number $\sqrt{3} + \sqrt{5}$ is irrational.

The statement is true. We will prove it by contradiction. Suppose $x = \sqrt{3} + \sqrt{5}$ is rational. Then $x = \frac{m}{n}$ for some $m, n \in \mathbb{Z}$, $n \neq 0$. Since x > 0, $m \neq 0$. We have $x - \sqrt{3} = \sqrt{5}$. Then $(x - \sqrt{3})^2 = (\sqrt{5})^2$, so $x^2 - 2x\sqrt{3} + 3 = 5$. This implies that $\sqrt{3} = \frac{x^2 - 2}{2x} = \frac{\frac{m^2 - 2n^2}{2}}{\frac{2m}{n}} = \frac{m^2 - 2n^2}{2mn}$. Since $m^2 - 2n^2$, $2mn \in \mathbb{Z}$ and $2mn \neq 0$,

 $\sqrt{3}$ is rational. However, by a homework problem $\sqrt{3}$ is irrational. Contradiction. Therefore x is irrational.