MATH 111

Practice Test 3

Note: the actual test will consist of five or six questions.

1. This test is primarily on chapters $8-10$, however, knowledge of previously covered material may be required. Review all terms, notations, and types of proofs in chapters 0-10.
2. Prove or disprove the following statements.
(a) There exists a nonzero integer a such that for every real number $b, b^{2} \geq a$.
(b) There exists an integer a such that $a^{3}+2 a+3=100$.
(c) For any integer a there exists an integer b such that $b^{2}=a$.
(d) The sum of any two positive irrational numbers is irrational.
(e) Any irrational number is the sum of an irrational number and a positive rational number.
(f) For any sets A and B there exists a set C such that $A \cup C=B \cup C$.
(g) Let A, B, C, and D be sets such that $A \subset C$ and $B \subset D$. If $A \cap B=\emptyset$, then $C \cap D=\emptyset$.
(h) Let A, B, C, and D be sets such that $A \subset C$ and $B \subset D$. If $C \cap D=\emptyset$, then $A \cap B=\emptyset$.
3. Let $A=\{1,2,3,4\}$ and $B=\{a, b, c\}$. Which of the following are relations from A to B or relations from B to A ? Which of them are functions?
(a) $\{(a, 1),(b, 2),(c, 3)\}$
(b) $\{(1, b),(1, c),(3, a),(4, b)\}$
4. Determine which of the following relations are reflexive; symmetric; transitive. Which of them are equivalence relations? For those that are, describe the distinct equivalence classes.
(a) Relation R on set \mathbb{Z} defined by $(a, b) \in R$ iff $a+b=0$.
(b) Relation R on set \mathbb{R} defined by $(a, b) \in R$ iff $\frac{a}{b} \in \mathbb{Q}$.
(c) Relation R on set \mathbb{R} defined by $(a, b) \in R$ iff $a b>0$.
(d) Relation R on set \mathbb{Z} defined by $(a, b) \in R$ iff $a \equiv b(\bmod 3)$.
(e) Relation R on set \mathbb{Q} defined by $(a, b) \in R$ iff $a>b$.
5. Determine which of the following functions are one-to-one; onto; bijective.
(a) $f: \mathbb{Z} \rightarrow \mathbb{Z}$ defined by $f(n)=5 n^{2}+2$.
(b) $f: \mathbb{N} \rightarrow \mathbb{R}$ defined by $f(n)=\frac{1}{n}$.
(c) $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=\left\{\begin{array}{ll}\frac{1}{x} & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{array}\right.$.
(d) $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=x^{3}-x$.
