
MATH 114 Final Exam - Solutions

1. Is the function f(x) = x2 from N to N

(a) one-to-one?

Yes. Suppose f(x1) = f(x2). For real numbers we have x2
1 = x2

2 → x1 = ±x2. Since
x1 and x2 are natural numbers, x1 = x2.

(b) onto?

No. For example, 2 is not in the image because there is no x ∈ N such that x2 = 2.

2. Use Mathematical Induction to prove that 2n < n! for every positive integer n with n ≥ 4.

Basis step. If n = 4, 24 = 16 < 24 = 4!.

Inductive step. Assume 2k < k!. Then 2k+1 = 2k · 2 < k! · 2 < k!(k + 1) = (k + 1)!.

3. Let P (x, y) denote the proposition y = x + 5 where x and y are positive integers. Determine
the truth value of the following propositions.

(a) ∀x∃yP (x, y)

True. For any positive integer x, x+5 is a positive integer, so we can choose y = x+5.

(b) ∀y∃xP (x, y)

False. Counterexample: if y = 1, there is no positive integer x that satisfies 1 = x + 5.

(c) ∃y∀xP (x, y)

False. We will show that ¬∃y∀xP (x, y) is true.
¬∃y∀xP (x, y) ≡ ∀y¬∀xP (x, y) ≡ ∀y∃x¬P (x, y) ≡ ∀y∃x y 6= x + 5.
For any positive integer y we can choose x = y + 4. Then y = x − 4, so y 6= x + 5.

4. Consider the following graph.

a b

c d

e f

(a) How many vertices does this graph have?

6

(b) How many edges does this graph have?

8

(c) Is this graph bipartite?

Yes. Label the vertices as shown above. The set of vertices can be partitioned into the
following 2 sets: V1 = {a, b, e, f} and V2 = {c, d}. Then every edge connects a vertex in
V1 and a vertex in V2.

5. How many different strings can be made by reordering the letters of the word SUCCESS?

7!

3!2!1!1!
=

5040

12
= 420 (by a theorem in the book) because there are three Ss, two Cs, one U ,

and one E.

Another way: there are

(

7

3

)

ways to choose 3 positions for Ss, then

(

4

2

)

ways to choose 2

positions for Cs, then 2 ways to choose the position for U , and the remaining letter must be

E. There are

(

7

3

)(

4

2

)

2 =
7!

3!4!

4!

2!2!
2 = 35 · 6 · 2 = 420.

1



6. Draw the graph of f(x) = dx2 − 2e.

y

x

7. (a) If a|c and b|c, does a necessarily divide b?

No. Counterexample: a = 2, b = 3, c = 6. Then 2|6, 3|6, but 2 6 |3.
(b) If a|b and b|c, does a necessarily divide c?

Yes. If a|b and b|c then b = an and c = bm for some n, m ∈ Z. Then c = bm = anm

and nm ∈ Z. Therefore a|c.

8. (a) Show that the relation R = {(a, b) | bac = bbc} on the set of real numbers is an equivalence
relation.

R is reflexive because for any a ∈ R, bac = bac, so (a, a) ∈ R.

R is symmetric because if bac = bbc then bbc = bac, so (a, b) ∈ R → (b, a) ∈ R.

R is transitive because if bac = bbc and bbc = bcc then bac = bcc, so
(a, b) ∈ R ∧ (b, c) ∈ R → (a, c) ∈ R.

(b) How many equivalence classes are there for this equivalence relation? Describe them.

Each equivalence is an interval of the form [n, n + 1) for some integer n. There are
infinitely many equivalence classes: . . ., [−1, 0), [0, 1), [1, 2), [2, 3), . . ..

9. Thirteen small insects are placed inside a 1 × 1 square. Show that at any moment there are

at least four insects which can be covered by a single disk of radius
2

5
.

Divide the square into 4 smaller ( 1

2
× 1

2
) squares as shown below. Think of insects as “objects”

and small squares as “boxes” (note: assign each boundary point to one of the squares whose
boundary it belongs to; it doesn’t matter which one; for example, we could number the small
squares and assign each boundary point to the square with the smallest number). Since there
are 13 insects and 4 small squares, by the generalized Dirichlet’s principle there is at least one

square that contains at least

⌈

13

4

⌉

= 4 insects.

Next we will show that a square 1

2
× 1

2
can be covered by a disk of radius

2

5
. The diagonal of

the square is

√

1

4
+

1

4
=

√

2

4
=

√
2

2
and the diameter of the disk is

4

5
.

Since 50 < 64, we have
√

50 < 8, or 5
√

2 < 8. Dividing both sides by 10 gives

√
2

2
<

4

5
.

We see that the diagonal of the square is less than the diameter of the disk, therefore the
square can by covered by the disk.

Now, we showed that at least 4 insects are contained in one square, and the square can be
covered by a disk, therefore at least 4 insects can be covered by a disk.
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10. Prove that infinitely many Fibonacci numbers are divisible by 10.

Recall that Fibonacci numbers are defined by F0 = 0, F1 = 1, Fn = Fn−1 + Fn−2 for n ≥ 2.
Since Fn ≡ Fn−1 + Fn−2(mod 10), the last digit of each Fibonacci number Fn depends only
on the last digits of two preceeding Fibonacci numbers. Let Dn be the last digit of Fn for each
n ≥ 0. Consider pais of consecutive last digits: (D0, D1), (D1, D2), (D2, D3), and so on.
Since there are only 100 possible pairs of digits (there are 10 possibilities for each of the two
digits), there must be a repetition among pairs (Dk, Dk+1). So for some nonnegative integers
l and m, Dl = Dm and Dl+1 = Dm+1. In other words, there are two pairs of consecutive
Fibonacci numbers with the same last digits. It follows that the last digits of the numbers
immediately following these pairs are also the same, and the last digits of next numbers are
the same, and so on. So the sequence of the last digits is periodic. Now calculate the last
digits until we have a repetition described above:

0, 1, 1, 2, 3, 5, 8, 3, 1, 4, 5, 9, 4, 3, 7, 0, 7, 7, 4, 1, 5, 6, 1, 7, 8, 5, 3, 8, 1, 9, 0, 9, 9, 8, 7,
5, 2, 7, 9, 6, 5, 1, 6, 7, 3, 0, 3, 3, 6, 9, 5, 4, 9, 3, 2, 5, 7, 2, 9, 1, 0, 1, 1, 2, 3, 5,

Since 0, 1 repeat, the sequence will repeat afterward. There are 0s in the cycle, so infinitely
many Fibonacci numbers end with 0.

Note: actually, notice that the repetition must start with 0 and 1. Because if it doesn’t then
consider the first time that two consecutive last digits repeat. Since Fn−2 = Fn − Fn−1, the
last digit of a Fibonacci number is determined by the last digits of the two numbers following
it. Therefore the last digits of the numbers immediately preceeding the repeated pais are also
the same. Contradiction. Hence 0, the last digit of F0, is a part of the cycle. So we didn’t
even have to compute the above digits.
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