8.2 \# 18(f) (optional)

Let the cube be the set of points $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ in \mathbb{R} such that $0 \leq x_{i} \leq 1$ for each i. Then the set of vertices is the set of ordered 4 -tuples of zeros and ones. There are 16 vertices. Two vertices are connected if and only if their coordinates differ in exactly one position. The set of vertices with $x_{4}=0$ and edges connecting these vertices form Q_{3} shown in black. The vertices with $x_{4}=1$ and edges connecting these form another copy of Q_{3}, shown in blue. Finally, red edges connect vertices in the black Q_{3} and the blue Q_{3} whose coordinates x_{1}, x_{2}, and x_{3} are the same (but x_{4} are different).

8.2 \#24 For which values of n are these graphs bipartite?

(a) K_{n}
K_{1} is bipartite if we allow one of the sets (V_{1} or V_{2} using the notation in definition 5 on page 550) to be empty (the book does).
K_{2} is bipartite because we can let one vertex be in V_{1} and the other vertex to be in V_{2}.
K_{n} for $n \geq 3$ is not bipartite: choose any 3 vertices. They all are pairwise connected, therefore there is no way to partition them into two disjoint sets V_{1} or V_{2} such that there are no edges within V_{1} and no edges within V_{2}.
(b) C_{n}
C_{n} is bipartite if and only if n is even. Label the vertices by $1,2, \ldots$ consecutively along the cycle. If vertex 1 is in V_{1} then vertex 2 must be in V_{2}, vertex 3 must be in V_{1}, vertex 4 must be in V_{2}, and so on. All vertices with odd number are in V_{1} and all vertices with even number are in V_{2}. The last vertex is in V_{1} if n is odd and it is in V_{2} if n is even. But it is connected to vertex 1 . We see that if n is odd, the graph is not bipartite, and if n is even, the graph is bipartite.

(d) Q_{n} (optional)

Q_{n} is bipartite for any n. Let V_{1} consist of all vertices whose sum of coordinates is odd and let V_{2} consist of all vertices whose sum of coordinates is even. Two vertices in Q_{n} are connected if and only if their coordinates differ in only one position, therefore the sums of their coordinates have different parity, so they are in different sets.

