MATH 114

Homework 7 - Solutions to selected problems

1.4, \# 28. Determine the truth value of each of these statements if the universe of discourse of each variable consists of all real numbers.
(a) $\forall x \exists y\left(x^{2}=y\right)$ True because for any x, we can choose $y=x^{2}$.
(b) $\forall x \exists y\left(x=y^{2}\right)$ False. Counterexample: if $x=-1$, there is no y such that $-1=y^{2}$.
(c) $\exists x \forall y(x y=0)$ True. Example: $x=0$. Then for any $y, 0 \cdot y=0$.
(d) $\exists x \exists y(x+y \neq y+x)$ False because for all x and $y, x+y=y+x$ (commutativity law).
(e) $\forall x(x \neq 0 \rightarrow \exists y(x y=1))$ True because any nonzero real number has a multiplicative inverse, namely, for any $x \neq 0$, we can choose $y=\frac{1}{x}$, then $x y=1$.
(f) $\exists x \forall y(y \neq 0 \rightarrow x y=1)$ False. Suppose there exists such an x. Then for $y=2$ we have $x \cdot 2=1$, so $x=\frac{1}{2}$, and for $y=3$ we have $x \cdot 3=1$, so $x=\frac{1}{3}$. But $\frac{1}{2} \neq \frac{1}{3}$. Contradiction.
(g) $\forall x \exists y(x+y=1)$ True because for any x, we can choose $y=1-x$, and then $x+y=x+1-x=1$.
(h) $\exists x \exists y(x+2 y=2 \wedge 2 x+4 y=5) \quad$ False because this system has no solutions: multiplying the first equation by 2 gives $2 x+4 y=4$, and subtracting this from the second equation gives $0=1$. Therefore the system is inconsistent.
(i) $\forall x \exists y(x+y=2 \wedge 2 x-y=1)$ False. Counterexample: $x=0$. Then the equations are $y=2$ and $-y=1$, or $y=2$ and $y=-1$, but $2 \neq-1$. So for $x=0$ there is no y that satisfies both equations.
(j) $\forall x \forall y \exists z(z=(x+y) / 2)$ True because for any x and $y, z=(x+y) / 2$ is a real number.
1.8, \# 14. Determine whether $f: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z}$ is onto if
(c) $f(m, n)=m+n+1$. Yes because any integer y is in the image: $f(y-1,0)=y-1+0+1=y$.
(d) $f(m, n)=|m|-|n|$. Yes because any integer y is in the image: if $y \geq 0$ then $f(y, 0)=$ $|y|-|0|=y-0=y$, and if $y<0$ then $f(0, y)=|0|-|y|=0-(-y)=y$.
(e) $f(m, n)=m^{2}-4$. No because, for example, -5 is not in the image: there are no m and n such that $m^{2}-4=-5\left(\right.$ or $\left.m^{2}=-1\right)$.
1.8, \#36. Let f be a function from the set A to the set B. Let S be a subset of B. We define the inverse image of S to tbe the subset of A containing all pre-images of all elements of S. We denote the inverse image of S by $f^{-1}(S)$, so that $f^{-1}(S)=\{a \in$ $A \mid f(a) \in S\}$.
Let S and T be subsets of B. Show that
(a) $f^{-1}(S \cup T)=f^{-1}(S) \cup f^{-1}(T)$.
$f^{-1}(S \cup T)=\{x \in A \mid f(a) \in S \cup T\}=\{x \in A \mid f(a) \in S \vee f(a) \in T\}$
$=\{x \in A \mid f(a) \in S\} \cup\{x \in A \mid f(a) \in T\}=f^{-1}(S) \cup f^{-1}(T)$
(a) $f^{-1}(S \cap T)=f^{-1}(S) \cap f^{-1}(T)$.
$f^{-1}(S \cap T)=\{x \in A \mid f(a) \in S \cap T\}=\{x \in A \mid f(a) \in S \wedge f(a) \in T\}$
$=\{x \in A \mid f(a) \in S\} \cap\{x \in A \mid f(a) \in T\}=f^{-1}(S) \cap f^{-1}(T)$

1.8, \#60. Draw graphs of each of these functions.

(b) $f(x)=\lceil 0.2 x\rceil$

Draw the grapf of $y=0.2 x$. Mark all the points whose y-coordinate is an integer. These points belong to the graph $y=\lceil 0.2 x\rceil$ too because for any integer number $n,\lceil n\rceil=n$. For all points whose y-coordinate is between two integers, say $n<y<n+1,\lceil y\rceil=n+1$. So you have to "lift" those points to the next integer value.

(d) $f(x)=\left\lfloor x^{2}\right\rfloor$

Draw the grapf of $y=x^{2}$. Mark all the points whose y-coordinate is an integer. These points belong to the graph $y=\left\lfloor x^{2}\right\rfloor$ too because for any integer number $n,\lfloor n\rfloor=n$. For all points whose y-coordinate is between two integers, say $n<y<n+1,\lfloor y\rfloor=n$. So you have to "lower" those points to the next integer value.

2.6, \# 20. Find all solutions, if any, to the system of congruences.

$$
\left\{\begin{array}{l}
x \equiv 5(\bmod 6) \\
x \equiv 3(\bmod 10) \\
x \equiv 8(\bmod 15)
\end{array}\right.
$$

Since 6,10 , and 15 are not pairwise relatively prime, we can't use the Chinese Remainde Theorem (CRT). However, this does not mean that the system has no solution.

By CRT, $x \equiv 5(\bmod 6)$ is equivalent to the system $\left\{\begin{array}{l}x \equiv 5(\bmod 2) \\ x \equiv 5(\bmod 3)\end{array}\right.$
$x \equiv 3(\bmod 10)$ is equivalent to the system $\left\{\begin{array}{l}x \equiv 3(\bmod 2) \\ x \equiv 3(\bmod 5)\end{array}\right.$
$x \equiv 8(\bmod 15)$ is equivalent to the system $\left\{\begin{array}{l}x \equiv 8(\bmod 3) \\ x \equiv 8(\bmod 5)\end{array}\right.$
Therefore the original system is equivalent to $\left\{\begin{array}{l}x \equiv 5(\bmod 2) \\ x \equiv 5(\bmod 3) \\ x \equiv 3(\bmod 2) \\ x \equiv 3(\bmod 5) \\ x \equiv 8(\bmod 3) \\ x \equiv 8(\bmod 5)\end{array}\right.$
Here, the congruences $x \equiv 5(\bmod 2)$ and $x \equiv 3(\bmod 2)$ are equivalent since $3 \equiv 5(\bmod 2)$. The congruences $x \equiv 5(\bmod 3)$ and $x \equiv 8(\bmod 3)$ are equivalent. Also, the congruences $x \equiv 3(\bmod 5)$ and $x \equiv 8(\bmod 5)$ are equivalent.
Therefore the system is equivalent to $\left\{\begin{array}{l}x \equiv 5(\bmod 2) \\ x \equiv 5(\bmod 3) \\ x \equiv 3(\bmod 5)\end{array}\right.$
Now we can use CRT. Using the notations in the book, we have
$M=30, M_{1}=15, M_{2}=10, M_{3}=6$. Then we need to solve: $15 y_{1} \equiv 1(\bmod 2), 10 y_{2} \equiv 1(\bmod 3)$, and $6 y_{3} \equiv 1(\bmod 5)$. By guessing (since these all are small numbers) or using the Euclidean algorithm, we find $y_{1}=1, y_{2}=1$, and $y_{3}=1$ satisfy these congruences.

Therefore $x \equiv 5 \cdot 15 \cdot 1+5 \cdot 10 \cdot 1+3 \cdot 6 \cdot 1=143 \equiv 23(\bmod 30)$.

