MATH 114
 Test 1 - Solutions

October 1, 2004

1. Show that $(\neg q \wedge(p \rightarrow q)) \rightarrow \neg p$ is a tautology.

There are many ways to prove this. One is using a truth table. Others use logical equivalences. One short proof I could find is as follows.
$(\neg q \wedge(p \rightarrow q)) \rightarrow \neg p \equiv \neg(\neg q \wedge(p \rightarrow q)) \vee \neg p \equiv q \vee \neg(p \rightarrow q) \vee \neg p \equiv(\neg p \vee q) \vee \neg(p \rightarrow q) \equiv$ $(p \rightarrow q) \vee \neg(p \rightarrow q) \equiv T$
2. Let $P(x, y)$ be the statemnt $x^{2}<y$ where both x and y are real numbers. Determine the truth values of the following propositions. Give examples and explanations to support your answers.
(a) $P(3,4)$ is false because $9>4$.
(b) $\forall x \forall y P(x, y)$ is false. Counterexample: $x=3, y=4$, see (a).
(c) $\exists y \exists x P(x, y)$ is true. Example: $x=1, y=2$.
(d) $\forall x \exists y P(x, y)$ is true. Given an x, we can choose $y=x^{2}+1$, and then $x^{2}<y$.
(e) $\exists x \forall y P(x, y)$ is false. No matter what x is, $P(x, 0)$ is false.
3. Prove that the sum of two odd numbers is even.

Let $2 n+1$ and $2 m+1$ be two odd numbers. Then their sum is $(2 n+1)+(2 m+1)=$ $2 n+2 m+2=2(n+m+1)$. It is divisible by 2, and therefore is even.
4. Let $S=\{1,2,3,4\}$ and $T=\{2,4,5\}$. Find the following:
(a) The cardinality of S is 4 (the number of elements in S)
(b) $S \cup T=\{1,2,3,4,5\}$ (the union of S and T)
(c) $S \cap T=\{2,4\}$ (the intersection of S and T)
(d) $S-T=\{1,3\}$ (the set of elements of S which are not in T)
(e) How many elements are there in $S \times T$? 12 because $S \times T$ consists of all pairs of the form (element of S, element of T), and there are 4 elements in S and 3 elements in T
5. Which of the following functions $\mathbb{R} \rightarrow \mathbb{R}$ are one-to-one? onto? Explain.
(a) $f(x)=-x+2$ is both one-to-one and onto.

One-to-one: $f\left(x_{1}\right)=f\left(x_{2}\right) \Rightarrow-x_{1}+2=-x_{2}+2 \Rightarrow-x_{1}=-x_{2} \Rightarrow x_{1}=x_{2}$
Onto: Let $y \in \mathbb{R}$, then $f(-y+2)=-(-y+2)+2=y-2+2=y$
(b) $f(x)=e^{x}$ is one-to-one but not onto.

One-to-one: $f\left(x_{1}\right)=f\left(x_{2}\right) \Rightarrow e^{x_{1}}=e^{x_{2}} \Rightarrow \ln e^{x_{1}}=\ln e^{x_{2}} \Rightarrow x_{1}=x_{2}$
Not onto because there is no x such that $e^{x}=0$ (since e^{x} takes on only positive values)
(c) $f(x)=x^{4}$ is neither one-to-one nor onto.

Not one-to-one: $f(1)=f(-1)$ but $1 \neq-1$
Not onto because there is no x such that $x^{4}=-1$
6. Sketch the graphs of $f(x)=\lfloor 1-x\rfloor$ and $g(x)=\lceil 1-x\rceil$.

$$
y=\lfloor 1-x\rfloor
$$

$$
y=\lceil-1-x\rceil
$$

