MATH 114

Test 2 - Solutions

November 5, 2004

1. (a) Find an inverse of 5 modulo 8.

$$
\begin{aligned}
& \begin{array}{l}
8=1 \cdot 5+3 \\
5=1 \cdot 3+2 \\
3=1 \cdot 2+1 \\
1=3-2=3-(5-3)=3-5+3=2 \cdot 3-5=2(8-5)-5=2 \cdot 8-3 \cdot 5 \\
\text { Therefore }-3 \text { is an inverse of } 5 \text { modulo } 8 \text {. } \\
\text { (b) Solve the congruence } 5 x \equiv 7(\bmod 8) . \\
\text { Multiply both sides of the congruence by }-3 \text { : } \\
-15 x \equiv-21(\bmod 8) \\
x \equiv-21(\bmod 8) \\
x \equiv 3(\bmod 8)
\end{array}
\end{aligned}
$$

2. Solve the system

$$
\left\{\begin{array}{l}
x \equiv 0(\bmod 3) \\
x \equiv 2(\bmod 7) \\
x \equiv 1(\bmod 10)
\end{array}\right.
$$

$M=3 \cdot 7 \cdot 10=210, M_{1}=70, M_{2}=30, M_{3}=21$.
Next we find y_{1}, y_{2}, y_{3} s.t. $70 y_{1} \equiv 1(\bmod 3)$, $30 y_{2} \equiv 1(\bmod 7)$, and $21 y_{3} \equiv 1(\bmod 10)$.
Rewrite $70 y_{1} \equiv 1(\bmod 3)$ as $y_{1} \equiv 1(\bmod 3)$, so we can take $y_{1}=1$.
Rewrite $30 y_{2} \equiv 1(\bmod 7)$ as $2 y_{2} \equiv 1(\bmod 7)$, so we can take $y_{2}=4$.
Rewrite $21 y_{3} \equiv 1(\bmod 10)$ as $y_{3} \equiv 1(\bmod 10)$, so we can take $y_{3}=1$.
Then $x \equiv 70 \cdot 1 \cdot 0+30 \cdot 4 \cdot 2+21 \cdot 1 \cdot 1=240+21=261(\bmod 210)$ or $x \equiv 51(\bmod 210)$.
3. Prove that for any nonnegative integer $n, n^{3}+5 n$ is divisible by 6 .

There are many different proofs. Here is one. $n^{3}+5 n=n^{3}-n+6 n=(n-1) n(n+1)+6 n$. $(n-1) n(n+1)$ is the product of 3 consecutive numbers, so at least one of them is even and at least one of them is divisible by 3. Therefore the product is divisible by both 2 and 3 and so is divisible by 6. Clearly $6 n$ is divisible by 6 . Thus $(n-1) n(n+1)+6 n$ is divisible by 6 .
4. Use Mathematical Induction to prove that for any positive integer n,

$$
1 \cdot 2+2 \cdot 3+\ldots+n(n+1)=\frac{1}{3} n(n+1)(n+2)
$$

Basis step: $n=1$. The formula gives $1 \cdot 2=\frac{1}{3} \cdot 1 \cdot 2 \cdot 3$ which is true.
Inductive step: Assume the formula holds for $n=k$, i.e.
$1 \cdot 2+2 \cdot 3+\ldots+k(k+1)=\frac{1}{3} k(k+1)(k+2)$.
We want to show that the formula holds for $n=k+1$.
$1 \cdot 2+2 \cdot 3+\ldots+k(k+1)+(k+1)(k+2)=\frac{1}{3} k(k+1)(k+2)+(k+1)(k+2)=$ $\left(\frac{1}{3} k+1\right)(k+1)(k+2)=\frac{k+3}{3}(k+1)(k+2)=\frac{1}{3}(k+1)(k+2)(k+3)$.
5. A password must contain 8 characters. Each character can be either a digit or a letter. The password must contain at least one digit and at least one letter. How many different passwords are possible?
Since there are 10 digits and 26 letters, there are 36^{8} strings of lenght 8. But 26^{8} strings consist entirely of letters (so they do not contain any digits) and 10^{8} strings consist entirely of digits (so they do not contain any letters). Therefore there are $36^{8}-10^{8}-26^{8}$ possible passwords.

