MATH 114

Test 3 - Solutions

December 6, 2004

1. Show that the relation $R = \{(a, b) \mid a - b \text{ is an even integer}\}$ is an equivalence relation and describe the equivalence class of a real number r. What is the equivalence class of 1.5?

(i) For any $a \in \mathbb{R}$, a - a = 0 is an even integer, so $(a, a) \in \mathbb{R}$. Thus \mathbb{R} is reflexive. (ii) If $(a, b) \in \mathbb{R}$, then a - b is an even integer, b - a = -(a - b) is an even integer, so $(b, a) \in \mathbb{R}$. Thus \mathbb{R} is symmetric. (iii) If $(a, b) \in \mathbb{R}$ and $(b, c) \in \mathbb{R}$ then a - b and b - c are even integers. Then a - c = (a - b) + (b - c)is an even integer, so $(a, c) \in \mathbb{R}$. Thus \mathbb{R} is transitive. Therefore \mathbb{R} is an equivalence relation. The equivalence class of a number r is $[r] = \{r + 2n \mid n \in \mathbb{Z}\} = \{\dots, r - 4, r - 2, r, r + 2, r + 4, \dots\},$ in particular $\{[1.5] = \{\dots, -2.5, -.5, 1.5, 3.5, 5.5, \dots\}.$

2. How many solutions are there to the equation

 $x_1 + x_2 + x_3 + x_4 + x_5 = 20$

where x_1, x_2, x_3, x_4, x_5 are nonnegative integers?

There is a 1-1 correspondence between solutions of this equation and arrangements of 20 stars and 4 bars where x_1 is the number of stars before the first bar, x_2 is the number of stars between the first and the second bar, etc. The number of such arrangements (and thus the number of solutions) is $\binom{24}{24} = \frac{24!}{24!}$

$$\binom{20}{20!4!} = \frac{1}{20!4!}$$

3. (a) Draw K_5 . (b) Draw $K_{3,4}$.

- (b) How many vertices and how many edges does K_{n,m} have?
 K_{n,m} has n + m vertices (n vertices in one group and m vertices in the other group) and nm edges (because every vertex in the first group is connected to every vertex in the second group).
- 4. What is the coefficient of x^5y^{10} in the expansion of $(2x y)^{15}$?

By the Binomial Theorem,
$$(2x - y)^{15} = \sum_{k=0}^{15} {\binom{15}{k}} (2x)^{15-k} (-y)^k = \sum_{k=0}^{15} (-1)^k {\binom{15}{k}} 2^{15-k} x^{15-k} y^k$$
.
The term with $x^5 y^{10}$ corresponds to $k = 10$. Thus the coefficient is $(-1)^k {\binom{15}{k}} 2^{15-k}$.

5. How many strings of 8 upper case letters from the English alphabet contain exactly two As and exactly three Bs?

There are $\binom{8}{2}$ ways to choose the two positions of As. After they have been chosen there are $\binom{6}{3}$ ways to choose the three positions of Bs. For each of the remaining 3 positions we have 24 choices (any letter except A and B). Therefore there are $\binom{8}{2}\binom{6}{3}24^3$ such strings.

6. 40 different numbers are chosen from the set $\{1, 2, ..., 100\}$. Show that there are at least 4 different pairs of these numbers with the same sum.

There are $\binom{40}{2} = \frac{40 \cdot 39}{2} = 780$ pairs. The smallest possible sum is 1 + 2 = 3. The largest possible sum is 99 + 100 = 199. Therefore there are 197 possible sums. Think of pairs as "objects" and possible sums as "boxes". By the generalized Dirichlet's principle, at least $\left\lceil \frac{780}{199} \right\rceil = 4$ pairs have the same sum.