MATH 114
 Test 3 - Solutions

December 6, 2004

1. Show that the relation $R=\{(a, b) \mid a-b$ is an even integer $\}$ is an equivalence relation and describe the equivalence class of a real number r. What is the equivalence class of 1.5?
(i) For any $a \in \mathbb{R}, a-a=0$ is an even integer, so $(a, a) \in R$. Thus R is reflexive.
(ii) If $(a, b) \in \mathbb{R}$, then $a-b$ is an even integer, $b-a=-(a-b)$ is an even integer, so $(b, a) \in \mathbb{R}$. Thus R is symmetric.
(iii) If $(a, b) \in \mathbb{R}$ and $(b, c) \in \mathbb{R}$ then $a-b$ and $b-c$ are even integers. Then $a-c=(a-b)+(b-c)$ is an even integer, so $(a, c) \in \mathbb{R}$. Thus R is transitive.
Therefore R is an equivalence relation. The equivalence class of a number r is
$[r]=\{r+2 n \mid n \in \mathbb{Z}\}=\{\ldots, r-4, r-2, r, r+2, r+4, \ldots\}$,
in particular $\{[1.5]=\{\ldots,-2.5,-.5,1.5,3.5,5.5, \ldots\}$.
2. How many solutions are there to the equation

$$
x_{1}+x_{2}+x_{3}+x_{4}+x_{5}=20
$$

where $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}$ are nonnegative integers?
There is a 1-1 correspondence between solutions of this equation and arrangements of 20 stars and 4 bars where x_{1} is the number of stars before the first bar, x_{2} is the number of stars between the first and the second bar, etc. The number of such arrangements (and thus the number of solutions) is $\binom{24}{20}=\frac{24!}{20!4!}$.
3. (a) Draw K_{5}.

(b) Draw $K_{3,4}$.

(b) How many vertices and how many edges does $K_{n, m}$ have?
$K_{n, m}$ has $n+m$ vertices (n vertices in one group and m vertices in the other group) and $n m$ edges (because every vertex in the first group is connected to every vertex in the second group).
4. What is the coefficient of $x^{5} y^{10}$ in the expansion of $(2 x-y)^{15}$?

By the Binomial Theorem, $(2 x-y)^{15}=\sum_{k=0}^{15}\binom{15}{k}(2 x)^{15-k}(-y)^{k}=\sum_{k=0}^{15}(-1)^{k}\binom{15}{k} 2^{15-k} x^{15-k} y^{k}$. The term with $x^{5} y^{10}$ corresponds to $k=10$. Thus the coefficient is $(-1)^{k}\binom{15}{k} 2^{15-k}$.
5. How many strings of 8 upper case letters from the English alphabet contain exactly two A s and exactly three $B \mathrm{~s}$?
There are $\binom{8}{2}$ ways to choose the two positions of As. After they have been chosen there are $\binom{6}{3}$ ways to choose the three positions of Bs. For each of the remaining 3 positions we have 24 choices (any letter except A and B). Therefore there are $\binom{8}{2}\binom{6}{3} 24^{3}$ such strings.
6. 40 different numbers are chosen from the set $\{1,2, \ldots, 100\}$. Show that there are at least 4 different pairs of these numbers with the same sum.
There are $\binom{40}{2}=\frac{40 \cdot 39}{2}=780$ pairs. The smallest possible sum is $1+2=3$. The largest possible sum is $99+100=199$. Therefore there are 197 possible sums. Think of pairs as "objects" and possible sums as "boxes". By the generalized Dirichlet's principle, at least $\left\lceil\frac{780}{199}\right\rceil=4$ pairs have the same sum.

