Math 114
 Optional Problems on Pigeonhole Principle

1. Six points are given inside a 7×8 rectangle. Prove that among them there are at least two points with distance between each other less than or equal to 5 .
2. (a) Prove that among 11 distinct natural numbers, there are two numbers $a<b$ such that the difference $b-a$ ends with 0 (i.e., has the units digit 0).
(b) Is the above statement true for the tens digit?
3. (2pts) We proved in class that every sequence of $n^{2}+1$ distinct real numbers has a monotone (i.e., increasing or decreasing) subsequence of length $n+1$. Show that a subsequence of n^{2} distinct real numbers may not have a monotone subsequence of length $n+1$
(a) in the special case of $n=3$, that is, give an example of a sequence of length 9 that does not have any monotone subsequence of length 4.
(b) in general, for any $n \geq 1$, that is, show how to construct a sequence of length n^{2} that does not have any monotone subsequence of length $n+1$.
