
Math 145 Fall 2003

Homework 12

Calculus

Due 1 December 2003, 5 points each:

- 1. Find the *n*-th derivative of $f(x) = \frac{1}{x^2 + x}$. Hint: use the partial fraction decomposition. Recall that since $x^2 + x = x(x+1)$, the partial fraction decomposition has the form $\frac{A}{x} + \frac{B}{x+1}$.
- 2. Sketch the region $S = \{(x,y) \mid |x| \ge 1, |y| \ge 2, x^2 + y^2 \le 9\}$ and find its area.
- 3. Find a such that the area of the region bounded by the line y = ax and the parabola $y = x^2$ is equal to 1.
- 4. Find the sum of the series $\sum_{n=0}^{\infty} \frac{1}{2^{2n+1}} = \frac{1}{2} + \frac{1}{2^3} + \frac{1}{2^5} + \frac{1}{2^7} + \dots$ Hint: e.g. factor out $\frac{1}{2}$, and notice that $2^{2n} = 4^n$.
- 5. The figure below shows a circle with radius 1 inscribed in the parabola $y = x^2$. Find the center of the circle.

Extra credit: Find the volume of a 4-dimensional unit ball.