Math 145 Fall 2003

Homework 8 - Solutions

Case study

1. Solve for x: $x^{(x^2)} = x^2$.

First check x = 0. This is not a root because 0^0 is undefined. If $x \neq 0$, we can divide both sides of the equation by x^2 . We get $x^{x^2-2} = 1$. Consider 3 cases:

Case I: x = 1, this is a root since (as is easy to check) it satisfies the original equation.

Case II: $x \neq 0$, $x^2 - 2 = 0$ gives $x = \pm \sqrt{2}$. Both satisfy the original equation.

Case III: x = -1, $x^2 - 2$ is even. This has no solutions because if x = -1 then $x^2 - 2 = -1$ which is not even.

Answer: $1, \sqrt{2}, -\sqrt{2}$.

2. Find all the pairs (x,y) that satisfy the system $\begin{cases} x^{2x} = y+1 \\ x^y = 1 \end{cases}$

First consider the second equation. There are 3 cases:

Case I: x = 1. Then the first equation gives $1^2 = y + 1$, so y = 0. Check again that (1,0) satisfies both equations.

Case II: $x \neq 0$, y = 0. The first equation then becomes $x^{2x} = 1$. Consider 3 cases here:

Case I: x=1 gives the same solution as the one we found above.

Case II: $x \neq 0$, 2x = 0 has no solutions.

Case III: x = -1, 2x is ok, and then check again that (-1,0) satisfies both equations.

Case III: x = -1, y even. The first equation then becomes $(-1)^{-2} = y + 1$, so y = 0. This gives (-1, 0) again.

Answer: (1,0) and (-1,0).

3. Solve for x: $x^2 - |5x - 6| \le 0$.

Case I: $5x - 6 \ge 0$, or equivalently $x \ge \frac{6}{5}$.

Then the inequality becomes $x^2 - (5x - 6) < 0$.

$$x^2 - 5x + 6 \le 0$$

$$(x-2)(x-3) \le 0$$

$$x \in [2,3]$$

Since all the points in the interval [2, 3] satisfy the condition $x \ge \frac{6}{5}$, all of them are solutions.

Case II: 5x - 6 < 0, or $x < \frac{6}{5}$.

Then the inequality becomes $x^2 + (5x - 6) \le 0$.

$$x^2 + 5x - 6 \le 0$$

$$(x+6)(x-1) \le 0$$

$$x \in [-6, 1]$$

Since all the points in the interval [-6, 1] satisfy the condition $x < \frac{6}{5}$, all of them are solutions.

Answer: $[-6, 1] \cup [2, 3]$.

4. Sketch the graph of f(x) = |x + |x + 2|.

First sketch the graph of y = x + |x + 2|.

Case I: $x + 2 \ge 0$, or $x \ge -2$.

Then y = x + x + 2 = 2x + 2, so we draw the line y = 2x + 2 on the interval $[-2, \infty)$.

Case II: x + 2 < 0, or x < -2.

Then y = x - (x + 2) = x - x - 2 = -2, so we draw the horizontal line y = -2 on the interval $(-\infty, -2)$.

Thus we have the graph of y = x + |x + 2|:

Now we take the absolute value of the whole expression, and obtain the graph of y = |x + |x + 2||:

5. Sketch the region $\{(x,y) \mid |x| + |y^3| < 8\}$.

Case I: $x \ge 0$, $y \ge 0$, then $x + y^3 < 8$, or $x < 8 - y^3$.

Case II: $x \ge 0$, y < 0, then $x - y^3 < 8$, or $x < 8 + y^3$.

Case III: $x < 0, y \ge 0$, then $-x + y^3 < 8$, or $x > y^3 - 8$.

Case IV: x < 0, y < 0, then $-x - y^3 < 8$, or $x > -8 - y^3$.

Now we draw the corresponding region in each quadrant, and we get the following figure:

Note: since the inequality is strict, the boundary if the region is excluded.