Practice Test 1 - Solutions

Answer the question (5 points):

- What does “a and b are relatively prime” mean?
 Answer: It means that the greatest common divisor of a and b is 1.
 or: It means that no number bigger than 1 divides both a and b.

and do any 3 of the following problems (15 points each):

1. Prove that if n is an integer then $n^2 + 2$ is not divisible by 5.
 Solution: Consider all possible remainders of n mod 5, and in each case, compute the remainder of $n^2 + 2$:
 - If $n \equiv 0 \pmod{5}$, then $n^2 + 2 \equiv 2 \pmod{5}$;
 - if $n \equiv 1 \pmod{5}$, then $n^2 + 2 \equiv 3 \pmod{5}$;
 - if $n \equiv 2 \pmod{5}$, then $n^2 + 2 \equiv 6 \equiv 1 \pmod{5}$;
 - if $n \equiv 3 \pmod{5}$, then $n^2 + 2 \equiv 11 \equiv 1 \pmod{5}$;
 - if $n \equiv 4 \pmod{5}$, then $n^2 + 2 \equiv 18 \equiv 3 \pmod{5}$;
 We see that $n^2 + 2$ is never congruent to 0 mod 5, so it is never divisible by 5.
 Another solution: We know from a homework problem that n^2 can end with 0, 1, 4, 5, 6, or 9. Then $n^2 + 2$ can end with 2, 3, 6, 7, 8, or 1. So it never ends with 5 or 0, therefore it is never divisible by 5.

2. Prove that for any natural n,
 $$1 \cdot 1! + 2 \cdot 2! + \ldots + n \cdot n! = (n + 1)! - 1.$$
 Solution: We will prove this identity by Mathematical Induction.
 Basis step: for $n = 1$ we have $1 \cdot 1! = 2! - 1$, or $1 = 2 - 1$ which is true.
 Inductive step: suppose the identity holds for $n = k$, i.e.
 $$1 \cdot 1! + 2 \cdot 2! + \ldots + k \cdot k! = (k + 1)! - 1.$$
 Add $(k + 1) \cdot (k + 1)!$ to both sides:
 $$1 \cdot 1! + 2 \cdot 2! + \ldots + k \cdot k! + (k + 1) \cdot (k + 1)! = (k + 1)! - 1 + (k + 1) \cdot (k + 1)! =$$
 $$(k + 1)!(1 + k + 1) - 1 = (k + 2)! - 1.$$
 Thus the identity holds for $n = k + 1$.

3. Let $P(x, y)$ denote the proposition “$x < y$” where x and y are real numbers. Determine the truth values of
 (a) $\exists x \exists y P(x, y)$,
 (b) $\forall x \exists y P(x, y)$,
 (c) $\exists x \forall y P(x, y)$,
 (d) $\forall x \forall y P(x, y)$.
Solution:
(a) True. Example: $x = 1, y = 2, 1 < 2$.
(b) True. For any x, if we take $y = x + 1$ then $x < y$.
(c) False. There is no such x that for any y, $y > x$, because for any x we can take $y = x$, then $x \not< y$.
(d) False. Counterexample: $x = 2, y = 1, 2 \not< 1$.

4. Let $f_1(x) = 2x + 1$ and $f_n = f_1 \circ f_{n-1}$. Compute f_n for some small values of n. Notice the pattern. Write a formula for f_n and prove it using Mathematical Induction.

Solution:
$f_2(x) = 2(2x + 1) + 1 = 4x + 3$
$f_3(x) = 2(4x + 3) + 1 = 8x + 7$
$f_4(x) = 2(8x + 7) + 1 = 16x + 15$
It appears that $f_n = 2^n x + 2^n - 1$, so we will try to prove this by Mathematical Induction.

Basis step: if $n = 1$, then our formula gives $f_1 = 2x + 1$ which is true.
Inductive step: suppose the formula holds for $n = k$, i.e. $f_k = 2^k x + 2^k - 1$.
Then $f_{k+1} = f_1 \circ f_k = 2(2^k x + 2^k - 1) + 1 = 2^{k+1} x + 2^{k+1} - 2 + 1 = 2^{k+1} x + 2^{k+1} - 1$.
Thus the formula holds for $n = k + 1$.

Extra credit (15 points):

• Six points are selected inside a 3×4 rectangle. Prove that there two of them such that the distance between them is at most $\sqrt{5}$.

Solution: Divide the rectangle into 5 regions as shown on the picture. Since there are 6 points, by Dirichlet’s principle at least two of them are in the same region. The distance between them is at most $\sqrt{5}$.