
Math 145 Fall 2003

Reveiw Problems - Solutions
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Solution 1 (straightforward). Calculate the value of the expression for some small
values of n, and notice the pattern.
The expression only makes sense for n ≥ 2.
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Proof by induction.
The basis step (for n = 2) is verified above.
Suppose the formula holds for n = k. We want to prove that it holds for n = k+1.
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Solution 2 (short by non-obvious).
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2. Prove that if p > 3 is prime, then p2 ≡ 1 (mod 24).
Solution 1 (straightforward) Consider all possible remainders mod 24, and elim-
inate the ones which are not possible for a prime number. Namely, eliminate
numbers of the form 24n, 24n + 2, 24n + 3, 24n + 4, 24n + 6, 24n + 8, 24n + 9,
24n + 10, 24n + 12, 24n + 14, 24n + 15, 24n + 16, 24n + 18, 24n + 20, 24n + 21,
and 24n + 22 because all of these are either even or divisible by 3. We are left
with the following possibilities: 24n + 1, 24n + 5, 24n + 7, 24n + 11, 24n + 13,
24n + 17, 24n + 19, 24n + 23. The remainder mod 24 of the square of such a
number, (24n + r)2 = 242n2 + 48nr + r2, is the same as the remainder of r2 mod
24. But 11 = 1, 52 = 25 = 24 + 1, 72 = 49 = 24 · 2 + 1, 132 = 169 = 24 · 7 + 1,
172 = 289 = 24 · 12 + 1, 192 = 361 = 24 · 15 + 1, and 232 = 529 = 24 · 22 + 1 all
have remainder 1 mod 24.
Solution 2 (a bit shorter). It is actually sufficient to consider all possible remain-
ders mod 12, since (12n + r)2 = 144n2 + 24nr + r2 ≡ r2 (mod 24). The proof is
as above.

3. There are 8 people in a room. Every person counted how many people he knows.
(Assume that if A knows B then B knows A.)

(a) The numbers are 0, 1, 1, 2, 2, 3, 4, 4. Prove that somebody made a mistake.
If these numbers were possible, we would be able to represent these people by a
graph as follows. Let every person be represented by a vertex, and two vertices
are connected if and only if the corresponding people know each other. Then
the degree of each vertex is the number of people that person knows. The
number of vertices of odd degrees must be even (or, equivalently, the sum of
all degrees is even). But there are 3 odd numbers here (two 1’s and one 3),
so there is no such graph. Contradiction.

(b) Can the numbers be 0, 1, 2, 3, 4, 5, 6, 7?
No, because of 0 and 7: it is impossible that one person doesn’t know anybody,
and another person knows everybody.

4. We strike the first digit of the number 72003, and add it to the remaining number.
This is repeated until a number with 10 digits remains. Prove that this number
has 2 equal digit.
This operation does not change the number mod 9. Namely, suppose that the first
digit of the number is a. Then the number can be written as 10na+b (where b is the
rest of the number). We replace it by a+b. The difference is 10na−a = (10n−1)a
which is divisible by 9. The original number is a power of 7, hence not divisibly by
9. Thus, the resulting number with 10 digits is not divisibly by 9. Therefore the
sum of its digits is not divisible by 9. But if all 10 digits are distinct, then their
sum is 45 which is divisible by 9. Hence some digit repeats.
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5. Show that it is not possible to cover any rectangle by one tile of type 1 shown
below, one tile of type 2, and any number of tiles of type 3.

1 2 3
The first thing we try is the chessboard coloring. But each tile then covers 3 black
and 3 white squares, so this will not give us a contradiction. We have to find
a coloring so that for at least one color, different types of tiles cover different
numbers of squares of that color. Try the diagonal coloring with 3 colors. Then a
tile of type 1 covers 3 squares of one color, 2 squares of another color, and only
1 square of the third color. While tiles of types 2 and 3 cover 2 squares of each
color. So suppose such tiles cover a rectangle. Each tile covers 6 squares, the area
of the rectangle is divisible by 6, and hence divisible by 3. Then at least one its
dimensions (say, length) is divisible by 3. Then if we color the board diagonally
by 3 colors, each row will have the same number of squares of each color. So the
number of squares of each color in the whole rectangle is the same. As we said,
tiles of type 2 and 3 cover the same number of squares of each color. Since the
only tile of type 1 covers 3 squares of one color and only 1 square of another color,
we get a contradiction.

1 2 3
Note: We actually proved a stronger statement since we did not use here that
there is only one tile of type 2. We could have any number of them. There may be
another coloring for which you do have to use the fact that there is only one tile
of type 2.

6. Let S be a set of 25 points such that, in any 3-subset of S, there are at least 2
points with distance less than 1. Prove that there exists a 13-subset of S which
can be covered by a disk of radius 1.
Pick any point A. If any other point is within 1 unit of A, then all the points are
covered by the disk with center at A and radius 1, and we are done. Now suppose
there is a point B such that |AB| > 1. Then for any other point X in the set,
either |AX| < 1 or |BX| < 1. Thus X is covered either by the disk with center at
A and radius 1 or by the disk with center at B and radius 1. Thus every of the 25
points is covered by at least one of the 2 disks. By Dirichlet’s principle, there is a
disk that covers at least 13 points.
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