MATH 145

Test 1

26 September 2003

Name: _________________________________

Answer the question (5 points):

• Let \(P(x, y) \) be a propositional function. Are \(\forall x \exists y P(x, y) \) and \(\exists y \forall x P(x, y) \) logically equivalent?

Answer ("yes" or "no"): _______

and do any 3 of the following problems (15 points each):

1. Prove that among 120 integers, there are two whose difference ends with 00.
2. Compute \(A_n = 1 + 3 + 5 + \ldots + (2n - 1) \) for some small values of \(n \). Notice the pattern. Write a formula for \(A_n \) and prove it using Mathematical Induction.
3. Prove that for every integer \(n \), \(n^3 + 2n \) is divisible by 3.
4. 7 points are selected inside a regular hexagon whose sides have length 1. Prove that there are two points such that the distance between them is at most 1.

Extra credit (15 points):

• Prove that among \(n + 1 \) positive integers all less than or equal to \(2n \), there are two which are relatively prime.
1. Prove that among 120 integers, there are two whose difference ends with 00.
2. Compute $A_n = 1 + 3 + 5 + \ldots + (2n - 1)$ for some small values of n. Notice the pattern. Write a formula for A_n and prove it using Mathematical Induction.
3. Prove that for every integer \(n \), \(n^3 + 2n \) is divisible by 3.
4. 7 points are selected inside a regular hexagon whose sides have length 1. Prove that there are two points such that the distance between them is at most 1.
Extra credit: Prove that among \(n + 1 \) positive integers all less than or equal to \(2n \), there are two which are relatively prime.