MATH 145

Test 3

8 December 2003

Evaluate the integral (5 points):

•
$$\int_{-4}^{2} |x+2| dx$$
 (use next page)

and do any 3 of the following problems (15 points each):

- 1. Two circles, S and T, and a point A are given. Find points B on S and C on T such that $\triangle ABC$ is isosceles with AB = AC, $\angle ABC = \angle ACB = 75^{\circ}$, and $\angle BAC = 30^{\circ}$. Assume that a solution exists.
- 2. Find integer numbers a and b such that 6 = 67a + 25b.
- 3. Two players play the following game.
 - Turns alternate.
 - At each turn, a player removes either 1 or 2 counters from a pile that had initially 10 counters.
 - The game ends when all counters have been removed.
 - The player who takes the last counter loses.

Find a winning strategy for one of the players.

- 4. The parabola $y = x^2 + 2$ has two tangent lines that pass through the origin. Find their equations.
- Extra credit (15 points): Two lines, p and q, and a point A are given. Find points B on p and C on q such that $\triangle ABC$ is isosceles with AB = BC, and $\angle ABC = 90^{\circ}$. Assume that a solution exists.

• Evaluate the integral: $\int_{-4}^{2} |x+2| dx =$

1. Two circles, S and T, and a point A are given. Find points B on S and C on T such that $\triangle ABC$ is isosceles with AB = AC, $\angle ABC = \angle ACB = 75^{\circ}$, and $\angle BAC = 30^{\circ}$. Assume that a solution exists.

2. Find integer numbers a and b such that 6 = 67a + 25b.

- 3. Two players play the following game.
 - Turns alternate.
 - At each turn, a player removes either 1 or 2 counters from a pile that had initially 10 counters.
 - The game ends when all counters have been removed.
 - The player who takes the last counter loses.

Find a winning strategy for one of the players.

4. The parabola $y = x^2 + 2$ has two tangent lines that pass through the origin. Find their equations.

Extra credit: Two lines, p and q, and a point A are given. Find points B on p and C on q such that $\triangle ABC$ is isosceles with AB = BC, and $\angle ABC = 90^{\circ}$. Assume that a solution exists.