Practice Test 3 - Solutions

- $\log _{8} 4=\frac{2}{3}$ since $8^{2 / 3}=4$

1. A circle of radius 2 passes through the center of a circle of radius 1 (see picture below). Find the area of the shaded triangle.

Label the points as shown in the above picture, where $A K$ and $B L$ are heights of the triangle $A B C$. Since $A B=A C$, the triangle $A B C$ is isosceles. $|B C|=1$, therefore $|B K|=\frac{1}{2}$, and by Pythagorean theorem $|A K|=\sqrt{2^{2}-\left(\frac{1}{2}\right)^{2}}=\sqrt{\frac{15}{4}}=\frac{\sqrt{15}}{2}$. Using base $B C$ and height $A K$, the area of triangle $A B C$ is $\frac{1}{2} \cdot 1 \cdot \frac{\sqrt{15}}{2}=\frac{\sqrt{15}}{4}$. On the other hand, using base $A C$ and height $B L$, its area is $\frac{1}{2} \cdot 2 \cdot|B L|=|B L|$. Therefore $|B L|=\frac{\sqrt{15}}{4}$. Then the area of triangle $B C D$ is $\frac{1}{2} \cdot 1 \cdot \frac{\sqrt{15}}{4}=\frac{\sqrt{15}}{8}$.
2. A graph $K_{k, l, m}$ has $k+l+m$ vertices divided into three sets: k vertices in one set, l vertices in another set, and m vertices in the third set. Two vertices are connected if and only if they are in different sets. Prove that $K_{1,3,5}$ has a Hamilton path but not a Hamilton cycle.

A Hamilton path is shown:

There is no Hamilton cycle because among 9 vertices, 5 are in one set. Thereofe if a Hamilton cycle existed then at least 2 of these 5 would be consecutive in the cycle. However, they cannot be joined because since they are in one set.
3. Find the greatest common divisor d of $a=96$ and $b=44$, and integer numbers x and y such that $x a+y b=d$.

```
\(96=2 \cdot 44+8\)
\(44=5 \cdot 8+4\)
\(8=2 \cdot 4\)
Therefore \(d=4\).
\(4=44-5 \cdot 8=44-5 \cdot(96-2 \cdot 44)=44-5 \cdot 96+10 \cdot 44=11 \cdot 44-5 \cdot 96\).
So \(a=-5, b=11\).
```

4. Find a number c such that the line $y=c$ divides the region bounded by $y=5-x^{2}$ and the x-axis into two regions of equal area.

Since the parabola is symmetric about the y-axis and the line is horizontal, the line also divides the region bounded by $y=5-x^{2}$, the x-axis, and the y-axis into two regions of equal area. Thus we may only consider the first quadrant. Therefore the area of the region between the parabola and the line is $\frac{1}{2}$ of the area under the parabola. Let the intersection point of the given parabola and line that lies in the first quadrant be (a, c). Then $c=5-a^{2}$, and we have:
$\int_{0}^{a}\left(5-x^{2}-c\right) d x=\frac{1}{2} \int_{0}^{\sqrt{5}}\left(5-x^{2}\right) d x$
$\int_{0}^{a}\left(a^{2}-x^{2}\right) d x=\frac{1}{2} \int_{0}^{\sqrt{5}}\left(5-x^{2}\right) d x$
$2 \int_{0}^{a}\left(a^{2}-x^{2}\right) d x=\int_{0}^{\sqrt{5}}\left(5-x^{2}\right) d x$
$\left.2\left(a^{2} x-\frac{x^{3}}{3}\right)\right|_{0} ^{a}=\left.\left(5 x-\frac{x^{3}}{3}\right)\right|_{0} ^{\sqrt{5}}$
$2\left(a^{3}-\frac{a^{3}}{3}\right)=5 \sqrt{5}-\frac{5 \sqrt{5}}{3}$
$\frac{4 a^{3}}{3}=\frac{10 \sqrt{5}}{3}$
$a^{3}=\frac{5 \sqrt{5}}{2}$
$a=\frac{\sqrt{5}}{\sqrt[3]{2}}$
$c=5-a^{2}=5-\frac{5}{\sqrt[3]{4}}$

- Find a curve that passes through the point $(3,2)$ and has the property that if the tangent line is drawn at any point P on the curve, then the part of the tangent line that lies in the first quadrant is bisected by P.

Let the curve be given by $y=f(x)$. Since it passes through $(3,2), f(3)=2$.
At a point $P(a, f(a))$, the tangent line has slope $f^{\prime}(a)$, and equation $y-f(a)=f^{\prime}(a)(x-$ a). Its x-intercept is $\left(-\frac{f(a)}{f^{\prime}(a)}+a, 0\right)$. The part of the tangent line that lies in the first quadrant is bisected by P iff $2 a=-\frac{f(a)}{f^{\prime}(a)}+a$. Thus a $f^{\prime}(a)=-f(a)$. Since this must be true for every point on the curve in the first quadrant, we have the differential equation $x f^{\prime}(x)=-f(x)$. Any function of the form $f(x)=\frac{c}{x}$ is a solution of this equation. Using the condition $f(3)=2$, we find $c=6$. So $f(x)=\frac{6}{x}$ satisfies the required condition.

