MATH 145

Test 1 - Solutions

- If P(x) is a propositional function, which of the following are logically equivalent: $\neg \exists x P(x)$, $\exists x \neg P(x)$, $\forall x \neg P(x)$? Answer: $\neg \exists x P(x)$ and $\forall x \neg P(x)$ are logically equivalent.
- 1. Let P(x, y) denote the propositional function "xy = 0" where x and y are real numbers. Determine the truth values of the following propositions. (Provide reasons!)
 - (a) $\exists x \forall y P(x, y)$ is true. For example, if x = 0 then for any y we have 0y = 0.
 - (b) $\forall x \exists y P(x, y)$ is true. For any x we can choose y = 0 and then x0 = 0.
 - (c) $\forall x \forall y P(x, y)$ is false. Counterexample: x = 1, y = 1. Then $1 \cdot 1 \neq 0$.
 - (d) $\exists !x \forall y P(x, y)$ is true. Only x = 0 satisfies the condition that for any y, xy = 0. Because if $x \neq 0$ then e.g. for y = 1 we'll have $xy \neq 0$.
 - (e) $\forall x \exists ! y P(x, y)$ is false. For x = 0 there are infinitely many values of y that give xy = 0 (in fact, y can be any real number). Thus not for any x such a y is unique.
- Prove that if a is rational and b is irrational then a + b is irrational. Is your proof direct, by contradiction, or by contrapositive? Proof by contradiction: Suppose a is rational, b is irrational, and yet a + b is not irrational, i.e. rational. Then a = ^c/_d for some integers c, d ≠ 0, and a + b = ^f/_g for some integers f, g ≠ 0. Then b = (a+b) - a = ^f/_g - ^c/_d = ^{fd-cg}/_{gd} is rational (notice that gd ≠ 0). We get a contradiction to the hypothesis that b is irrational. Thus the statement is true.
- 3. Use Mathematical Induction to prove that for any natural n, $\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \ldots + \frac{1}{2^n} = 1 \frac{1}{2^n}$. Basis step: if n = 1 then the identity is $\frac{1}{2} = 1 - \frac{1}{2}$ which is true. Inductive step: assume the identity holds for n = k, i.e. $\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \ldots + \frac{1}{2^k} = 1 - \frac{1}{2^k}$. We want to prove that the identity holds for n = k + 1, i.e. $\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \ldots + \frac{1}{2^{k+1}} = 1 - \frac{1}{2^{k+1}}$. Using the inductive hypothesis we have: $\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \ldots + \frac{1}{2^{k+1}} = \left(\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \ldots + \frac{1}{2^k}\right) + \frac{1}{2^{k+1}} = 1 - \frac{2}{2^{k+1}} + \frac{1}{2^{k+1}} = 1 - \frac{1}{2^{k+1}}$.
- 4. Ten points are chosen randomly inside a 3 × 3 square. Prove that there are two of them with distance at most √2.
 Divide the square into nine 1 × 1 squares. Since there are 9 squares and 10 points, by Dirichlet's Box Principle at least one square contains at least two points. Since the length of a diagonal of

the unit square is equal to $\sqrt{2}$, the distance between two such points is at most $\sqrt{2}$.

• Prove that for any integer number $n \ge 3$, $\left(1+\frac{1}{n}\right)^n < n$. Proof by Mathematical Induction. Basis step: if n = 3 we have $\left(1+\frac{1}{3}\right)^3 = \left(\frac{4}{3}\right)^4 = \frac{64}{27} < 3$. Inductive step: assume the inequality holds for n = k, i.e. $\left(1+\frac{1}{k}\right)^k < k$. We want to show that the inequality holds for n = k+1, i.e. $\left(1+\frac{1}{k+1}\right)^{k+1} < k+1$. The inductive hypothesis implies that $\left(\frac{k+1}{k}\right)^k < k$. Since $\frac{k+2}{k+1} < \frac{k+1}{k}$ (because $(k+2)k = k^2 + 2k < k^2 + 2k + 1 = (k+1)^2$), we have $\left(1+\frac{1}{k+1}\right)^{k+1} = \left(\frac{k+2}{k+1}\right)^{k+1} = \left(\frac{k+2}{k+1}\right)^{k+1} = \left(\frac{k+2}{k+1}\right)^{k+1}$