- If $P(x)$ is a propositional function, which of the following are logically equivalent: $\neg \exists x P(x)$, $\exists x \neg P(x), \quad \forall x \neg P(x) \quad$?

Answer: $\neg \exists x P(x)$ and $\forall x \neg P(x)$ are logically equivalent.

1. Let $P(x, y)$ denote the propositional function " $x y=0$ " where x and y are real numbers. Determine the truth values of the following propositions. (Provide reasons!)
(a) $\exists x \forall y P(x, y)$ is true. For example, if $x=0$ then for any y we have $0 y=0$.
(b) $\forall x \exists y P(x, y)$ is true. For any x we can choose $y=0$ and then $x 0=0$.
(c) $\forall x \forall y P(x, y)$ is false. Counterexample: $x=1, y=1$. Then $1 \cdot 1 \neq 0$.
(d) $\exists!x \forall y P(x, y)$ is true. Only $x=0$ satisfies the condition that for any $y, x y=0$. Because if $x \neq 0$ then e.g. for $y=1$ we'll have $x y \neq 0$.
(e) $\forall x \exists!y P(x, y)$ is false. For $x=0$ there are infinitely many values of y that give $x y=0$ (in fact, y can be any real number). Thus not for any x such a y is unique.
2. Prove that if a is rational and b is irrational then $a+b$ is irrational.

Is your proof direct, by contradiction, or by contrapositive?
Proof by contradiction: Suppose a is rational, b is irrational, and yet $a+b$ is not irrational, i.e. rational. Then $a=\frac{c}{d}$ for some integers $c, d \neq 0$, and $a+b=\frac{f}{g}$ for some integers $f, g \neq 0$. Then $b=(a+b)-a=\frac{f}{g}-\frac{c}{d}=\frac{f d-c g}{g d}$ is rational (notice that $g d \neq 0$). We get a contradiction to the hypothesis that b is irrational. Thus the statement is true.
3. Use Mathematical Induction to prove that for any natural n, $\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\ldots+\frac{1}{2^{n}}=1-\frac{1}{2^{n}}$.

Basis step: if $n=1$ then the identity is $\frac{1}{2}=1-\frac{1}{2}$ which is true.
Inductive step: assume the identity holds for $n=k$, i.e. $\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\ldots+\frac{1}{2^{k}}=1-\frac{1}{2^{k}}$.
We want to prove that the identity holds for $n=k+1$, i.e. $\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\ldots+\frac{1}{2^{k+1}}=1-\frac{1}{2^{k+1}}$.
Using the inductive hypothesis we have: $\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\ldots+\frac{1}{2^{k+1}}=\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\ldots+\frac{1}{2^{k}}\right)+$
$\frac{1}{2^{k+1}}=1-\frac{1}{2^{k}}+\frac{1}{2^{k+1}}=1-\frac{2}{2^{k+1}}+\frac{1}{2^{k+1}}=1-\frac{1}{2^{k+1}}$.
4. Ten points are chosen randomly inside a 3×3 square. Prove that there are two of them with distance at most $\sqrt{2}$.
Divide the square into nine 1×1 squares. Since there are 9 squares and 10 points, by Dirichlet's Box Principle at least one square contains at least two points. Since the length of a diagonal of the unit square is equal to $\sqrt{2}$, the distance between two such points is at most $\sqrt{2}$.

- Prove that for any integer number $n \geq 3, \quad\left(1+\frac{1}{n}\right)^{n}<n$.

Proof by Mathematical Induction. Basis step: if $n=3$ we have $\left(1+\frac{1}{3}\right)^{3}=\left(\frac{4}{3}\right)^{4}=\frac{64}{27}<3$.
Inductive step: assume the inequality holds for $n=k$, i.e. $\left(1+\frac{1}{k}\right)^{k}<k$.
We want to show that the inequality holds for $n=k+1$, i.e. $\left(1+\frac{1}{k+1}\right)^{k+1}<k+1$.
The inductive hypothesis implies that $\left(\frac{k+1}{k}\right)^{k}<k$. Since $\frac{k+2}{k+1}<\frac{k+1}{k}$ (because

$$
\begin{aligned}
& \left.(k+2) k=k^{2}+2 k<k^{2}+2 k+1=(k+1)^{2}\right), \text { we have }\left(1+\frac{1}{k+1}\right)^{k+1}=\left(\frac{k+2}{k+1}\right)^{k+1}= \\
& \left(\frac{k+2}{k+1}\right)^{k}\left(\frac{k+2}{k+1}\right)<\left(\frac{k+1}{k}\right)^{k}\left(\frac{k+2}{k+1}\right)<k \cdot \frac{k+2}{k+1}=\frac{k(k+2)}{k+1}<\frac{(k+1)^{2}}{k+1}=k+1
\end{aligned}
$$

