Name: ________________________________

Answer the question (5 points):

- If \(P(x) \) is a propositional function, which of the following are logically equivalent:
 \[\neg \exists x P(x), \, \exists x \neg P(x), \, \forall x \neg P(x) \] ?

 Answer: __

and do any 3 of the following problems (15 points each):

1. Let \(P(x, y) \) denote the propositional function \("xy = 0" \) where \(x \) and \(y \) are real numbers. Determine the truth values of the following propositions. (Provide reasons!)
 - \(\exists x \forall y P(x, y) \),
 - \(\forall x \exists y P(x, y) \),
 - \(\forall x \forall y P(x, y) \),
 - \(\exists x \exists y P(x, y) \),
 - \(\forall x \exists ! y P(x, y) \),
 - \(\forall x \forall ! y P(x, y) \).

2. Prove that if \(a \) is rational and \(b \) is irrational then \(a + b \) is irrational. Is your proof direct, by contradiction, or by contrapositive?

3. Use Mathematical Induction to prove that for any natural \(n \),
 \[\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \ldots + \frac{1}{2^n} = 1 - \frac{1}{2^n} \]

4. Ten points are chosen randomly inside a \(3 \times 3 \) square. Prove that there are two of them with distance at most \(\sqrt{2} \).

For extra credit (15 points):

- Prove that for any integer number \(n \geq 3 \),
 \[\left(1 + \frac{1}{n} \right)^n < n. \]
1. Let $P(x, y)$ denote the propositional function “$xy = 0$” where x and y are real numbers. Determine the truth values of the following propositions. (Provide reasons!)

(a) $\exists x \forall y P(x, y)$

(b) $\forall x \exists y P(x, y)$

(c) $\forall x \forall y P(x, y)$

(d) $\exists ! x \forall y P(x, y)$

(e) $\forall x \exists ! y P(x, y)$
2. Prove that if a is rational and b is irrational then $a + b$ is irrational.

Is your proof direct, by contradiction, or by contrapositive?
3. Use Mathematical Induction to prove that for any natural n,

$$
\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \ldots + \frac{1}{2^n} = 1 - \frac{1}{2^n}.
$$
4. Ten points are chosen randomly inside a 3×3 square. Prove that there are two of them with distance at most $\sqrt{2}$.
For extra credit: Prove that for any integer number $n \geq 3$, \(\left(1 + \frac{1}{n} \right)^n < n \).