## MATH 145 <br> Test 1

3 October 2005

Name:

Answer the question (5 points):

- If $P(x)$ is a propositional function, which of the following are logically equivalent:
$\neg \exists x P(x), \quad \exists x \neg P(x), \quad \forall x \neg P(x)$ ?
Answer: $\qquad$
and do any 3 of the following problems (15 points each):

1. Let $P(x, y)$ denote the propositional function " $x y=0$ " where $x$ and $y$ are real numbers. Determine the truth values of the following propositions. (Provide reasons!)
(a) $\exists x \forall y P(x, y)$,
(b) $\forall x \exists y P(x, y)$,
(c) $\forall x \forall y P(x, y)$,
(d) $\exists!x \forall y P(x, y)$,
(e) $\forall x \exists!y P(x, y)$.
2. Prove that if $a$ is rational and $b$ is irrational then $a+b$ is irrational. Is your proof direct, by contradiction, or by contrapositive?
3. Use Mathematical Induction to prove that for any natural $n$,

$$
\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\ldots+\frac{1}{2^{n}}=1-\frac{1}{2^{n}}
$$

4. Ten points are chosen randomly inside a $3 \times 3$ square. Prove that there are two of them with distance at most $\sqrt{2}$.

For extra credit (15 points):

- Prove that for any integer number $n \geq 3, \quad\left(1+\frac{1}{n}\right)^{n}<n$.

1. Let $P(x, y)$ denote the propositional function " $x y=0$ " where $x$ and $y$ are real numbers. Determine the truth values of the following propositions. (Provide reasons!)
(a) $\exists x \forall y P(x, y)$
(b) $\forall x \exists y P(x, y)$
(c) $\forall x \forall y P(x, y)$
(d) $\exists!x \forall y P(x, y)$
(e) $\forall x \exists!y P(x, y)$
2. Prove that if $a$ is rational and $b$ is irrational then $a+b$ is irrational.

Is your proof direct, by contradiction, or by contrapositive?
3. Use Mathematical Induction to prove that for any natural $n$,

$$
\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\ldots+\frac{1}{2^{n}}=1-\frac{1}{2^{n}}
$$

4. Ten points are chosen randomly inside a $3 \times 3$ square. Prove that there are two of them with distance at most $\sqrt{2}$.

For extra credit: Prove that for any integer number $n \geq 3, \quad\left(1+\frac{1}{n}\right)^{n}<n$.

