MATH 145

Test 2 - Solutions

- Is it true or false that if a and b are not integers then $\frac{a}{b}$ is irrational?

Answer: $\underline{\text { False }}$ (counterexample: $\frac{1 / 2}{1}=\frac{1}{2}$ is a rational number)

1. Solve for x : $(x-3)^{x^{2}-8 x+15}=0$

The power is 0 iff $x-3=0$ and $x^{2}-8 x+15 \neq 0$ (because 0^{0} is undefined), however, this system has no solutions.
Note: it was supposed to be $(x-3)^{x^{2}-8 x+15}=1$, so if you solved this equation, it was accepted.
Case I. $x-3=1$, then $x=4$.
Case II. $x^{2}-8 x+15=0, x-3 \neq 0$. The first equation holds when $x=3$ or $x=5$, but since $x-3 \neq 0$, we have only one solution in this case: $x=5$.
Case III. $x-3=-1, x^{2}-8 x+15$ is even. However, the only solution of the first $\overline{\text { equation }}$ is $x=2$, and for this value $x^{2}-8 x+15$ is not even. Therefore there are no solutions in this case.

Answer: $x=4, x=5$.
2. Find a formula for

$$
\prod_{i=1}^{2 n-1}\left(1-\frac{(-1)^{i}}{i}\right)=\left(1-\frac{-1}{1}\right)\left(1-\frac{1}{2}\right)\left(1-\frac{-1}{3}\right) \ldots\left(1-\frac{-1}{2 n-1}\right)
$$

and prove it.
Let $A_{n}=\prod_{i=1}^{2 n-1}\left(1-\frac{(-1)^{i}}{i}\right)$, then
$A_{1}=1-\frac{-1}{1}=2$
$A_{2}=\left(1-\frac{-1}{1}\right)\left(1-\frac{1}{2}\right)\left(1-\frac{-1}{3}\right)=2 \cdot \frac{1}{2} \cdot \frac{4}{3}=\frac{4}{3}$
$A_{3}=\left(1-\frac{-1}{1}\right)\left(1-\frac{1}{2}\right)\left(1-\frac{-1}{3}\right)\left(1-\frac{1}{4}\right)\left(1-\frac{-1}{5}\right)=2 \cdot \frac{1}{2} \cdot \frac{4}{3} \cdot \frac{3}{4} \cdot \frac{6}{5}=\frac{6}{5}$
Guess: $A_{n}=\frac{2 n}{2 n-1}$.
Proof by Mathematical Induction:
Basis step. If $n=1$, we have $A_{1}=2=\frac{2}{1}$ as shown above.

Inductive step. Suppose $A_{k}=\frac{2 k}{2 k-1}$.
We want to prove that $A_{k+1}=\frac{2(k+1)}{2(k+1)-1}=\frac{2 k+2}{2 k+1}$.
Using the inductive hypothesis, we have:

$$
\begin{aligned}
& A_{k+1}=\left(1-\frac{-1}{1}\right)\left(1-\frac{1}{2}\right)\left(1-\frac{-1}{3}\right) \ldots\left(1-\frac{-1}{2(k+1)-1}\right)= \\
& \left(1-\frac{-1}{1}\right)\left(1-\frac{1}{2}\right)\left(1-\frac{-1}{3}\right) \ldots\left(1-\frac{-1}{2 k-1}\right)\left(1-\frac{1}{2 k}\right)\left(1-\frac{-1}{2 k+1}\right)= \\
& A_{k}\left(1-\frac{1}{2 k}\right)\left(1-\frac{-1}{2 k+1}\right)=\frac{2 k}{2 k-1} \cdot \frac{2 k-1}{2 k} \cdot \frac{2 k+2}{2 k+1}=\frac{2 k+2}{2 k+1}
\end{aligned}
$$

3. Start with the set $\{1,4,32,128,256\}$. In each step, you may divide one number by 2 and multiply another number by 2 . Is it possible to reach the set $\{512,32,16,16,2\}$?

When we divide one number by 2 and multiply another number by 2 , we do not change the product of all five numbers. Thus the product is an invariant. However, the product of the numbers in the set $\{512,32,16,16,2\}$ is not equal to the product of the numbers in the initial set $\{1,4,32,128,256\}$.
(This can be shown in different ways, e.g.:)
$1 \cdot 4 \cdot 32 \cdot 128 \cdot 256=2^{0} \cdot 2^{2} \cdot 2^{5} \cdot 2^{7} \cdot 2^{8}=2^{0+2+5+7+8}=2^{22}$,
$512 \cdot 32 \cdot 16 \cdot 16 \cdot 2=2^{9} \cdot 2^{5} \cdot 2^{4} \cdot 2^{4} \cdot 2^{1}=2^{9+5+4+4+1}=2^{23} ;$
$\left(\right.$ or $\frac{1 \cdot 4 \cdot 32 \cdot 128 \cdot 256}{512 \cdot 32 \cdot 16 \cdot 16 \cdot 2}=\frac{1 \cdot 4 \cdot 32 \cdot 128 \cdot 256}{2 \cdot 16 \cdot 16 \cdot 32 \cdot 512}=\frac{1}{2} \cdot \frac{4}{16} \cdot \frac{32}{16} \cdot \frac{128}{32} \cdot \frac{256}{512}=\frac{1}{2} \cdot \frac{1}{4} \cdot 2 \cdot 4 \cdot \frac{1}{2}=$ $\frac{1}{2} \neq 1$.)
Therefore it is not possible to reach the set $\{512,32,16,16,2\}$.
4. Prove that an 8×8 board cannot be covered by 7 T-tetrominoes and 9 Ltetrominoes.

straight
tetromino

T-tetromino

square tetromino

L-tetromino

Color the board using the traditional chessboard coloring. Then there are 32 black squares and 32 white squares. Each T-tetromino covers either 1 or 3 black squares, therefore seven T-tetrominoes must cover an odd number of black squares. Each L-tetromino covers 2 black squares, therefore nine L-tetrominoes must cover 18 (i.e. and odd number of) black squares. Thus all sixteen tiles together must cover an (odd + even $=$) odd number of black squares. However, the board has an even number (32) of black squares, therefore a covering is not possible.

