MATH 145

Test 2

4 November 2005

Name:

\qquad

Answer the question (5 points):

- Is it true or false that if a and b are not integers then $\frac{a}{b}$ is irrational?

Answer: \qquad
and do any 3 of the following problems (15 points each):

1. Solve for x : $(x-3)^{x^{2}-8 x+15}=1$
2. Find a formula for

$$
\prod_{i=1}^{2 n-1}\left(1-\frac{(-1)^{i}}{i}\right)=\left(1-\frac{-1}{1}\right)\left(1-\frac{1}{2}\right)\left(1-\frac{-1}{3}\right) \ldots\left(1-\frac{-1}{2 n-1}\right)
$$

and prove it.
3. Start with the set $\{1,4,32,128,256\}$. In each step, you may divide one number by 2 and multiply another number by 2 . Is it possible to reach the set $\{512,32,16,16,2\}$?
4. Prove that an 8×8 board cannot be covered by 7 T-tetrominoes and 9 L tetrominoes.

- Extra credit (15 points): Which natural numbers are sums of consecutive smaller natural numbers? For example, $30=9+10+11$ and $31=15+16$, but 32 has no such representation. Find a simple condition and prove it.

1. Solve for x : $(x-3)^{x^{2}-8 x+15}=1$
2. Find a formula for

$$
\prod_{i=1}^{2 n-1}\left(1-\frac{(-1)^{i}}{i}\right)=\left(1-\frac{-1}{1}\right)\left(1-\frac{1}{2}\right)\left(1-\frac{-1}{3}\right) \ldots\left(1-\frac{-1}{2 n-1}\right)
$$

and prove it.
3. Start with the set $\{1,4,32,128,256\}$. In each step, you may divide one number by 2 and multiply another number by 2 . Is it possible to reach the set $\{512,32,16,16,2\}$?
4. Prove that an 8×8 board cannot be covered by 7 T-tetrominoes and 9 Ltetrominoes.

Extra credit: Which natural numbers are sums of consecutive smaller natural numbers? For example, $30=9+10+11$ and $31=15+16$, but 32 has no such representation. Find a simple condition and prove it.

