MATH 145
 Test 3 - Solutions

- Is the following statement true of false: if $\int_{a}^{b} f(x) d x>0$ then $f(x) \geq 0$ for all $x \in[a, b]$.

1. Sketch the region $S=\left\{(x, y) \mid x \geq 2, x^{2}+y^{2} \leq 16\right\}$ and find its area.

The region consists of all points on or inside the circle given by $x^{2}+y^{2}=16$ and on or to the right of the vertical line $x=2$. It is shown below (shaded):

The area of the region is the difference between the area of sector $A C B$ and the area of triangle $A C B$. Since $C D=2=\frac{1}{2} C A, \angle A C D=60^{\circ}$, therefore $\angle A C B=120^{\circ}$, and the area of the sector is $\frac{1}{3}$ of the area of the circle, i.e. $\frac{1}{3} \pi 4^{2}=\frac{16 \pi}{3}$. The area of triangle $A C B$ is $\frac{1}{2}|C D| \cdot|A B|=\frac{1}{2} \cdot 2 \cdot 4 \sqrt{3}=4 \sqrt{3}$. Thus the area of the shaded region is $\frac{16 \pi}{3}-4 \sqrt{3}$.
2. A graph $K_{k, l, m}$ has $k+l+m$ vertices divided into three sets: k vertices in one set, l vertices in another set, and m vertices in the third set. Two vertices are connected if and only if they are in different sets. Does $K_{1,2,4}$ have an Euler cycle? A graph $K_{1,2,4}$ is shown below. It has one vertex of degree 6 , two vertices of degree 5, and four vertices of degree 3. Since a graph has an Euler cycle if and only if all vertices have even degrees, this graph does not have an Euler cycle.

3. Two players play the following game.

- Turns alternate.
- At each turn, a player removes 1,2 , or 4 counters from a pile that had initially 10 counters.
- The game ends when all counters have been removed.
- The player who takes the last counter wins.

Find a winning strategy for one of the players.
In order to win we want to take the last counter. Thus we will win if we get 1, 2, or 4 counters on our last turn. This means that if we leave 3 counters on the turn before that, our opponent will be able to take 1 or 2 counters leaving us with 2 or 1 respectively. In order to be able to leave 3, we want to get 4, 5, or 7 counters. Now notice that if we leave 6 on the turn before that, our opponent will be able to take 1, 2, or 4, leaving us with 5, 4, or 2 respectively, and all of these are winning positions for us. Thus we want to go first and take 4 counters on our first turn. This will leave 6. Then, as described above, we will win. (This is a strategy for the first player.)
4. Explain why the curve shown below cannot be the graph of a cubic polynomial.

Reason 1: a cubic polynomial has at most 3 real roots while the given curve has 5 x-intercepts.
Reason 2: a cubic poynomial has at most 2 local extremum points (because its derivative is a quadratic polynomial and thus has at most 2 real roots) while the give curve has 4 local extrema.

- Extra credit (15 points): What is the ratio of the 5 -dimensional volume of a 5 -dimensional ball to the 4 -dimensional volume of its boundary (the analog of the surface area)?
The 5 -dimensional volume of a 5 -dimensional ball is proportional to the 5 -th degree of the radius. Let $V=c r^{5}$ where c is a constant. The 4-dimensional volume of its boundary (let's denote it by B) is the derivative of the volume: $B=5 \mathrm{cr}^{4}$. Therefore the ratio is $\frac{V}{B}=\frac{c r^{5}}{5 c r^{4}}=\frac{r}{5}$.

