MATH 145

Test 3

5 December 2005

Name:

Answer the question: is the following statement true of false? (5 points):

• If $\int_{a}^{b} f(x)dx > 0$ then $f(x) \ge 0$ for all $x \in [a, b]$.

```
Answer:
```

and do any 3 of the following problems (15 points each):

- 1. Sketch the region $S = \{(x, y) \mid x \ge 2, x^2 + y^2 \le 16\}$ and find its area.
- 2. A graph $K_{k,l,m}$ has k + l + m vertices divided into three sets: k vertices in one set, l vertices in another set, and m vertices in the third set. Two vertices are connected if and only if they are in different sets. Does $K_{1,2,4}$ have an Euler cycle?
- 3. Two players play the following game.
 - Turns alternate.
 - At each turn, a player removes 1, 2, or 4 counters from a pile that had initially 10 counters.
 - The game ends when all counters have been removed.
 - The player who takes the last counter wins.

Find a winning strategy for one of the players.

4. Explain why the curve shown below cannot be the graph of a cubic polynomial.

• Extra credit (15 points): What is the ratio of the 5-dimensional volume of a 5-dimensional ball to the 4-dimensional volume of its boundary (the analog of the surface area)?

1. Sketch the region $S = \{(x, y) \mid x \ge 2, x^2 + y^2 \le 16\}$ and find its area.

2. A graph $K_{k,l,m}$ has k + l + m vertices divided into three sets: k vertices in one set, l vertices in another set, and m vertices in the third set. Two vertices are connected if and only if they are in different sets. Does $K_{1,2,4}$ have an Euler cycle?

- 3. Two players play the following game.
 - Turns alternate.
 - At each turn, a player removes 1, 2, or 4 counters from a pile that had initially 10 counters.
 - The game ends when all counters have been removed.
 - The player who takes the last counter wins.

Find a winning strategy for one of the players.

4. Explain why the curve shown below cannot be the graph of a cubic polynomial.

For extra credit: What is the ratio of the 5-dimensional volume of a 5-dimensional ball to the 4-dimensional volume of its boundary (the analog of the surface area)?