MATH 145

Test 3

5 December 2005

Name:

Answer the question: is the following statement true of false? (5 points):

- If $\int_{a}^{b} f(x) d x>0$ then $f(x) \geq 0$ for all $x \in[a, b]$.

Answer: \qquad
and do any 3 of the following problems (15 points each):

1. Sketch the region $S=\left\{(x, y) \mid x \geq 2, x^{2}+y^{2} \leq 16\right\}$ and find its area.
2. A graph $K_{k, l, m}$ has $k+l+m$ vertices divided into three sets: k vertices in one set, l vertices in another set, and m vertices in the third set. Two vertices are connected if and only if they are in different sets. Does $K_{1,2,4}$ have an Euler cycle?
3. Two players play the following game.

- Turns alternate.
- At each turn, a player removes 1,2 , or 4 counters from a pile that had initially 10 counters.
- The game ends when all counters have been removed.
- The player who takes the last counter wins.

Find a winning strategy for one of the players.
4. Explain why the curve shown below cannot be the graph of a cubic polynomial.

- Extra credit (15 points): What is the ratio of the 5 -dimensional volume of a 5 -dimensional ball to the 4-dimensional volume of its boundary (the analog of the surface area)?

1. Sketch the region $S=\left\{(x, y) \mid x \geq 2, x^{2}+y^{2} \leq 16\right\}$ and find its area.
2. A graph $K_{k, l, m}$ has $k+l+m$ vertices divided into three sets: k vertices in one set, l vertices in another set, and m vertices in the third set. Two vertices are connected if and only if they are in different sets. Does $K_{1,2,4}$ have an Euler cycle?
3. Two players play the following game.

- Turns alternate.
- At each turn, a player removes 1,2 , or 4 counters from a pile that had initially 10 counters.
- The game ends when all counters have been removed.
- The player who takes the last counter wins.

Find a winning strategy for one of the players.
4. Explain why the curve shown below cannot be the graph of a cubic polynomial.

For extra credit: What is the ratio of the 5-dimensional volume of a 5 -dimensional ball to the 4 -dimensional volume of its boundary (the analog of the surface area)?

