
Math 145 Fall 2009

Test 1 - Solutions

1. We will prove this statement by contradiction. Suppose that 3
√

5 is rational.
Then it can be written as a fraction in lowest terms:
3
√

5 =
a

b
where a, b ∈ Z, (a, b) = 1.

Then 3
√

5b = a, so 5b3 = a3.
Therefore 5|a3. The prime factorization of a3 consists of all primes in the
prime factorization of a, each repeated three times. Since the prime fac-
torization of a3 contains 5, the prime factorization of a must contain 5 as
well. So 5|a. Then a = 5k for some k ∈ Z. It follows that 5b3 = (5k)3,
or b3 = 52k3. Thus the prime factorization of b3 contains 5, and for the
same reason as above, the prime factorization of b contains 5. Then 5|b and
(a, b) 6= 1. Contradiction.
Thus our assumption that 3

√
5 is rational was false.

Note: an alternative argument for “if 5|a3, then 5|a” can be made by contra-
positive. Namely, if 5 6 |a, consider 4 cases:
Case I: a ≡ 1 (mod 5), then a3 ≡ 1 (mod 5), so 5 6 |a3.
Case II: a ≡ 2 (mod 5), then a3 ≡ 3 (mod 5), so 5 6 |a3.
Case III: a ≡ 3 (mod 5), then a3 ≡ 2 (mod 5), so 5 6 |a3.
Case IV: a ≡ 4 (mod 5), then a3 ≡ 4 (mod 5), so 5 6 |a3.
Note: in the above proof with 4 cases, it is OK to use a = 4q + 1 instead of
a ≡ 1 (mod 5), etc.
Grading: the proof is worth 90%, the answer to the question about the type
of proof is 10%.
Typical flaw: fail/forget to explain why 5|a3 implies 5|a. This explanation is
considered to be 25% of the proof.
Typical work: first three lines are good, then stop or nonsense: 10%.
first four lines, then stop or nonsens: 20%

2. Note. As you probably noticed, there is a typo in the identity. It should be:

F0 − F1 + F2 − F3 + . . .− F2n−1 + F2n = F2n−1 − 1.

Proof by Mathematical Induction.
Basis step. If n = 1, the identity is F0−F1 +F2 = F1− 1 which is true since
0− 1 + 1 = 1− 1.
Inductive step. Assume the identity holds for n = k for some k ∈ N. We will
prove that it holds for n = k + 1.
Indeed, if F0 − F1 + F2 − F3 + . . .− F2k−1 + F2k = F2k−1 − 1, then
F0 − F1 + F2 − F3 + . . .− F2(k+1)−1 + F2(k+1) =
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F0 − F1 + F2 − F3 + . . .− F2k−1 + F2k − F2k+1 + F2k+2 =
F2k−1 − 1− F2k+1 + F2k+2 = F2k−1 − 1 + F2k = F2k+1 − 1 = F2(k+1)−1 − 1.
Grading: stated that will prove by Mathematical Induction and did the basis
step correctly: 30%.
Inductive step is worth 70%.
In the inductive step:
statement “assume holds for n = k for k ∈ N, will prove that it holds for
n = k + 1”: 10%
stated above and refrased correctly: “assume F0−F1+F2−F3+ . . .−F2k−1+
F2k = F2k−1 − 1,, will prove F0 − F1 + F2 − F3 + . . .− F2(k+1)−1 + F2(k+1) =
F2(k+1)−1 − 1, but did not prove: 20

3. Partition the given set into two subsets: {2, 4, 8, 16, 32, 64, 128} and {5, 25, 125}.
Since three numbers are chosen, by Dirichlet’s box principle, at least two of
them will be in the same subset. If they are both in the first subset, then
they both are powers of 2; if they are in the second subset, they both are
powers of 5. In any case, the larger of these two numbers is divisible by the
smaller, say, ai is divisible by aj. Then the quotient ai/aj is an integer.
Typical mistake: consider an example or even a few examples and show, for
these specific examples, that at least one of the quotients is an integer. This
would receive 0%.
Note: considering all possible pairs from the first subset and all possible
pairs from the second subset and showing that for each pair one of the two
quotients is an integer (without stating that the numbers in these subsets are
powers of 2 and of 5 respectively) is OK, although time/space consuming;
conversely, giving the argument about “two types of numbers” (powers of 2
and powers of 5) without explicitly giving both subsets is OK as well, if the
argument is clearly written.

4. Observe that 34 ≡ 81 ≡ 1(mod 10), therefore 32009 ≡ (34)502 · 3 ≡ 1 · 3 ≡
3 (mod 10).
Also, 25 ≡ 32 ≡ 2(mod 10), therefore 22009 ≡ (25)401 · 24 ≡ 2401 · 24 ≡ 2405 ≡
(25)81 ≡ 281 ≡ (25)16 ·2 ≡ 216 ·2 ≡ 217 ≡ (25)3 ·22 ≡ 23 ·22 ≡ 25 ≡ 2 (mod 10).
Thus 22009 +32009 ≡ 2+3 ≡ 5 (mod 10), so the last digit of 22009 +32009 is 5.
Note: there are many other ways to get both of the above parts (22009 and
32009). Any correct way is acceptable.
Grading: stated that need to calculate the given expression modulo 10: 10%;
each of the calculations (22009 and 32009): 40%; added the two parts: 10%.
Typical alternative approach: calculate the last digits of 21, 22, 23, etc. Get
the sequence: 2, 4, 8, 6, 2, 4, 8, 6, . . .. Observe that the sequence is periodic
with period 4. Since 2009 ≡ 1(mod 4), the last digit of 22009 is 2. Similarly,
for powers of 3 get the sequence 3, 9, 7, 1, 3, 9, 7, 1, . . .. So the last digit of
32009 is 3. The rest is as above.
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5. Let’s denote the terms of these sequence s0, s1, s2, . . .. Consider the first
10001 pairs of consecutive terms: (s0, s1), (s1, s2), (s10000, s10001). Since each
si has 100 possibile values (from 0 to 99, since addition is done modulo 100),
each pair has 1002 = 10000 possible values. Since there are more pairs than
possible values, by Dirichlet’s box principle there must be repetition. Let k
and n be such that k < n and (sk, sk+1) = (sn, sn+1). Then sk+2 = sn+2,
sk+3 = sn+3, etc., so the piece sk, sk+1, sk+2, . . . sn−1 will repeat. Since any
term of the sequence is always the sum of the two previous terms, this piece
will repeat infinitely.
Note: this is a tricky problem on undertanding of all of the following: how
the Fibonacci sequence works, how addition modulo n works, and Dirichlet’s
box principle (need to identify what to use as “objects” and figure out how
many ”boxes” there are and thus how many “objects” are needed to apply
the principle). A rigorous proof such as by math induction of the periodicity
is not expected, but is welcome. However, the appropriate “boxes” and
“objects” and the correct number of these are required to get full credit.
Partial credit is given for some good ideas.
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