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1921. Proposed by Enkel Hysnelaj, University of Technology, Sydney, Australia and
Elton Bojaxhiu, Kriftel, Germany.

Let f : (0,∞)→ R be a function such that

1

2

(
f (
√

x)+ f (
√

y)
) = f

(√
x + y

2

)

for every x, y ∈ (0,∞). Prove that

1

n

(
f (
√

x1)+ f (
√

x2)+ · · · + f (
√

xn)
) = f

(√
x1 + x2 + · · · + xn

n

)

for every positive integer n and for every x1, x2, . . . , xn ∈ (0,∞).
1922. Proposed by Arkady Alt, San Jose, CA.

Let ma , mb, and mc be the lengths of the medians of a triangle with circumradius R
and inradius r . Prove that

mamb + mbmc + mcma ≤ 5R2 + 2Rr + 3r 2.
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1923. Proposed by Leonid Menikhes and Valery Karachik, South Ural State Univer-
sity, Chelyabinsk, Russia.

Let m and n be nonnegative integers. Find a closed-form expression for the sum

2n∑
k=0

(−1)k
(

2n

k

)(
2m

m − n + k

)
.

1924. Proposed by Omran Kouba, Higher Institute for Applied Sciences and Technol-
ogy, Damascus, Syria.

Find a necessary and suffcient condition on (a1, a2, a3, a4) for the series

∞∑
n=0

(
a1

4n + 1
+ a2

4n + 2
+ a3

4n + 3
+ a4

4n + 4

)
to converge, and determine the sum of this series when that condition is satisfied.

1925. Proposed by Tim Kröger and Rudolf Rupp, Georg Simon Ohm University of
Applied Sciences, Nürnberg, Germany.

Probably every mathematician teaching undergraduate mathematics has experienced
the difficulty of persuading every student that the equation (A + B)−1 = A−1 + B−1

is not true for arbitrary matrices A and B. However, the equation is true for some
matrices A and B.

For every positive integer n, determine all pairs of n × n real matrices A and B such
that (A + B)−1 = A−1 + B−1.

Quickies

Answers to the Quickies are on page 233.

Q1031. Proposed by Herman Roelants, Institute of Philosophy, University of Leuven,
Belgium.

For which positive integers n do there exist positive integer solutions x, y to the dio-
phantine equation 4xy − x + y = n ?

Q1032. Proposed by Michael W. Botsko, Saint Vincent College, Latrobe, PA.

Suppose that f is a continuous real-valued function on [a, b] and c ∈ (a, b). In addi-
tion, suppose that f ′ exists and is decreasing on (a, b). Prove that

(b − c) f (a)+ (c − a) f (b) ≤ (b − a) f (c).

Solutions

A Fresnelian definite integral June 2012

1896. Proposed by Timothy Hall, PQI Consulting, Cambridge, MA.

Find with proof the value of ∫ ∞
0

cos(
√

x)√
x

cos x dx .
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I. Solution by Missouri State University Problem Solving Group, Missouri State Uni-
versity, Springfield, MO.
Substituting u = √x and noting that the integrand is an even function gives∫ ∞

0

cos(
√

x)√
x

cos x dx = 2
∫ ∞

0
cos(u) cos(u2)du =

∫ ∞
−∞

cos(u) cos(u2)du.

Using the addition and subtraction formulas for cosine, completing the square, and
using the substitutions v = u + 1/2 and w = u − 1/2, gives∫ ∞
−∞

cos(u) cos(u2)du = 1

2

∫ ∞
−∞

[
cos(u2 + u)+ cos(u2 − u)

]
du

= 1

2

∫ ∞
−∞

[
cos

((
u + 1

2

)2 − 1

4

)
+ cos

((
u − 1

2

)2 − 1

4

)]
du

= 1

2

∫ ∞
−∞

cos
(
v2 − 1

4

)
dv + 1

2

∫ ∞
−∞

cos
(
w2 − 1

4

)
dw

=
∫ ∞
−∞

cos
(
v2 − 1

4

)
dv

=
∫ ∞
−∞

[
cos(v2) cos

(1

4

)
+ sin(z2) sin

(1

4

)]
dv

= cos
(1

4

) ∫ ∞
−∞

cos(v2)dv + sin
(1

4

) ∫ ∞
−∞

sin(v2)dv.

Since the Fresnel integrals∫ ∞
−∞

cos(v2)dv =
√
π

2
=
∫ ∞
−∞

sin(v2)dv

are well known, the integral in question equals (cos(1/4)+ sin(1/4))
√
π/2.

II. Solution by Khristo N. Boyadzhiev, Ohio Northern University, Ada, OH.
As in the first solution, the requested integral is equal to

∫∞
−∞ cos(u) cos(u2)du. Con-

sider the real-valued function

y(t) =
∫ ∞
−∞

e−ax2
cos(xt)dx,

where a is a complex constant with <(a) > 0. Because the integral is absolutely con-
vergent, it is possible to differentiate inside the integral to get

y′(t) = −
∫ ∞
−∞

xe−ax2
sin(xt)dx .

Integrating y(t) by parts gives

y(t) =
∫ ∞
−∞

e−ax2 d

dx

(
sin(xt)

t

)
dx

= lim
R→∞

1

t
e−ax2

sin(xt)

∣∣∣∣x=R

x=−R

+
∫ ∞
−∞

2ax

t
e−ax2

sin(xt)dx

= 0+ 2a

t

∫ ∞
−∞

xe−ax2
sin(xt)dx = −2a

t
y′(t).
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The separable differential equation dy/dt = (−t/2a)y in the variable t has the solu-
tion y(t) = Me−t2/4a . To evaluate the constant M , we set t = 0 and use the well-known
value of the Gaussian integral,

y(0) =
∫ ∞
−∞

e−ax2
dx =

√
π

a
.

Thus ∫ ∞
−∞

e−ax2
cos(xt)dx =

√
π

a
e−t2/4a

holds for all t ∈ R and for all complex numbers a with <(a) > 0. By continuity, the
equation also holds for <(a) = 0 as long as a 6= 0. Setting t = 1 and a = i gives∫ ∞
−∞
(cos(x2)− i sin(x2)) cos(x)dx =

∫ ∞
−∞

e−i x2
cos(x)dx =

√
π

i
e−1/4i

= √π
(√2

2
− i

√
2

2

)(
cos

(1

4

)
+ i sin

(1

4

))
.

Comparing real parts gives∫ ∞
−∞

cos(x) cos(x2)dx =
√
π

2

(
cos

(1

4

)
+ sin

(1

4

))
.

Also solved by M. Reza Akhlaghi; George Apostolopoulos (Greece); William C. Bauldry; M. Benito, Ó. Ciau-
rri, E. Fernández, and L. Roncal; Gerald E. Bilodeau; Robert Calcaterra; Hongwei Chen; Paul Deiermann;
Eugene S. Eyeson; Fisher Problem Group; John N. Fitch; Ovidiu Furdui (Romania); J. A. Grzesik; Eugene
A. Herman; Julio C. Herrera and Mariano Perez; Omran Kouba (Syria); Isaac Edward Leonard (Canada); Ryan
Q. McCluskey; Matthew McMullen; Rituraj Nandan; José Heber Nieto (Venezuela); Northwestern University
Math Problem Solving Group; Moubinool Omarjee (France); Tomas Persson and Mikael P. Sundqvist (Sweden);
José M. Pacheco (Spain) and Ángel Plaza (Spain); Paolo Perfetti (Italy); Mohammad Riazi-Kermani; Kendall
Richards and Therese Shelton; Nicholas C. Singer; Thomas Steinberger; Nora Thornber; Tiberiu Trif (Romania);
Michael Vowe (Switzerland); Stan Wagon; Haohao Wang and Jerzy Woydylo; A. David Wunsch; Yanping Xia; Li
Zhou; and the proposer.

Partitions with balanced sums June 2012

1897. Proposed by H. A. ShahAli, Tehran, Iran.

Let n and m be positive integers such that m < n. Determine necessary and sufficient
conditions for a sequence {x j }nj=1 of real numbers to satisfy that∣∣∣∣∑

j∈S

x j

∣∣∣∣ = ∣∣∣∣ ∑
1≤ j≤n

j /∈S

x j

∣∣∣∣,
for every m-element subset S of {1, 2, . . . , n}.
Solution by Eugene A. Herman, Grinnell College, Grinnell, IA.
When m 6= n/2, the condition is

∑n
j=1 x j = 0; when m = n/2, the condition is∑n

j=1 x j = 0 or x1 = x2 = · · · = xn . The sufficiency of these conditions can be read-
ily confirmed. Now suppose {x j }nj=1 is a sequence of real numbers satisfying the
condition given in the problem. If for some m-element subset S of {1, 2, . . . , n},∑

j∈S

x j = −
∑

1≤ j≤n
j /∈S

x j ,
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then
∑n

j=1 x j = 0. Otherwise,

∑
j∈S

x j =
∑

1≤ j≤n
j /∈S

x j

for every m-element subset S of {1, 2, . . . , n}. If for some fixed S1, there exist i ∈ S1

and j /∈ S1 such that xi 6= x j , then for S2 = (S1 \ {i}) ∪ { j},∑
j∈S2

x j 6=
∑

1≤ j≤n
j /∈S2

x j .

Therefore, every element in S1 equals every element in {1, 2, . . . , n} \ S1, and so x1 =
x2 = · · · = xn and m = n/2.

Also solved by George Apostolopoulos (Greece), Jeffrey Boerner and Natacha Fontes-Merz, Paul Budney,
Bruce S. Burdick, Robert Calcaterra, Con Amore Problem Group (Denmark), Dmitry Fleischman, Michael Gold-
enberg and Mark Kaplan, Omran Kouba (Syria), Missouri State University Problem Solving Group, Jaeik Oh
(Korea), Texas State University Problem Solvers Group, and the proposer. There were three incorrect solutions.

More on Kuratowski 14-sets June 2012

1898. Proposed by Mark Bowron, Laughlin, NV.

A subset E of a topological space X is called a Kuratowski 14-set if 14 distinct sets
can be obtained by repeatedly applying closure and complement to E in some order.
It is known that Kuratowski 14-sets E with |E | = 3 exist. Do any exist with |E | < 3 ?

Solution by Bruce S. Burdick, Roger Williams University, Bristol, RI.
The answer is no. Suppose we had such an E . Using c for closure and i for interior,
the sets E , cE , icE , cicE , i E , ci E , and ici E must all be distinct. (The other seven
sets are the complements of these. Note that i E = X \ c(X \ E).)

The set i E must not be E and it must not be empty, since that would imply that
ci E = i E . So that rules out |E | < 2. Assume then that E = {x, y} and i E = {x}. Note
that if icE ⊆ ci E , then it would follow that icE = ici E . So there is some z ∈ icE
with z /∈ ci E = c{x}. But z ∈ cE , so it must be that z ∈ c{y}. Therefore, y ∈ icE .
Since x is isolated, we have E ⊆ icE , hence cE ⊆ cicE . Therefore, cE = cicE , a
contradiction.

Also solved by Alex Aguado, George Apostolopoulos (Greece), Jeffrey Boerner, Robert Calcaterra, José H. Ni-
eto (Venezuela), and the proposer. There was one incomplete submission.

Tangent points collinear with the centroid June 2012

1899. Proposed by Michel Bataille, Rouen, France.

Let A1 A2 A3 be a triangle with centroid G. For i ∈ {1, 2, 3}, the circle Ci with center
Oi and radius ri is tangent to the two lines through Ai spanned by the sides of the
triangle; moreover, the points of tangency and G are collinear. Prove that

r1

r1 + G O1
+ r2

r2 + G O2
+ r3

r3 + G O3
= 2.
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Solution by Shohruh Ibragimov (student), Lyceum Nr2 under the SamIES, Samarkand,
Uzbekistan.

A2A1

A3

G

Q

M

L

P

O1

Denote by M the midpoint of A2 A3, and by P and Q the tangent points of the circle
C1 with the lines A1 A3 and A1 A2, respectively. Denote by L the intersection of the
bisector of the angle ∠A2 A1 A3 and A2 A3. By the Generalized Angle Bisector Theorem
applied to4A1 A2 A3 and M , and the Law of Sines applied to4A1 A2 A3, it follows that

1 = A3 M

M A2
= A1 A3 · sin∠M A1 A3

A1 A2 · sin∠A2 A1 M
= sin∠A2

sin∠A3
· sin∠M A1 A3

sin∠A2 A1 M
.

Again, the Generalized Angle Bisector Theorem applied to isosceles triangles Q P A1

and P QO1 and point G implies that

sin∠M A1 A3

sin∠A2 A1 M
= sin∠G A1 P

sin∠Q A1G
= PG

G Q
= sin∠P O1G

sin∠G O1 Q
.

The last two equations imply that

sin(∠A1 + ∠A2)

sin∠A2
= sin∠A3

sin∠A2
= sin∠P O1G

sin∠G O1 Q
.

Because ∠Q P O1 = ∠O1 Q P = 1
2∠A1, it follows that ∠P O1G = π − (∠A1 +

∠G O1 Q), and so

sin(∠A1 + ∠A2)

sin∠A2
= sin(∠A1 + ∠G O1 Q)

sin∠G O1 Q
.

Thus ∠G O1 Q = ∠A2. In addition, ∠O1 QG = ∠O1 Q P = 1
2∠A1 = ∠A2 A1L , there-

fore triangles A1L A2 and QG O1 are similar. Hence

L A2

A1 A2
= G O1

QO1
= G O1

r1
.

Once more, by the Angle Bisector Theorem applied to 4A1 A2 A3, it follows that
(A2 A3 − L A2)/L A2 = A3L/L A2 = A1 A3/A1 A2, and so

L A2 = A1 A2 · A2 A3

A1 A2 + A1 A3
.
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Using this we obtain G O1/r1 = A2 A3/(A1 A2 + A1 A3), and thus

r1

r1 + G O1
= 1

1+ G O1/r1
= A1 A2 + A1 A3

A1 A2 + A2 A3 + A1 A3
.

Adding similar identities for the expressions r2/(r2 + G O2) and r3/(r3 + G O3), we
get

3∑
i=1

ri

ri + G Oi
=

∑
cyc(A1 A2 + A1 A3)

A1 A2 + A2 A3 + A1 A3
= 2.

Also solved by George Apostolopoulos (Greece), Robert Calcaterra, Chip Curtis, Michael Goldenberg and
Mark Kaplan, L. R. King, Omran Kouba (Syria), Kee-Wai Lau (China), Peter Nüesch (Switzerland), Traian Viteam
(Uruguay), Michael Vowe (Switzerland), and the proposer. There was one incorrect submission.

Rings that are never isomorphic June 2012

1900. Proposed by Greg Oman, University of Colorado at Colorado Springs, Col-
orado Springs, CO.

Let X be a set, and let SX denote the set of all functions f : X → Z. The set SX

becomes a ring via the operations ( f + g)(x) := f (x) + g(x) and ( f · g)(x) :=
f (x)g(x). Let BX be the subring of SX consisting of the functions f whose images
in Z are finite. Does there exist an infinite set X such that the rings BX and SX are
isomorphic?

Solution by Paul Budney, Sunderland, MA.
The answer is no. Suppose X is infinite and φ : BX → SX is a ring isomorphism.
Let h ∈ SX \ BX be a function whose range is the set of positive integers, and let f =
φ−1(h). If f · g = 0 for some nonzero function g ∈ SX , then h · φ(g) = φ( f ) · φ(g) =
φ( f · g) = φ(0) = 0, which is a contradiction since φ(g) is not the zero function and
h(x) is never zero. It follows that f (x) is never zero, otherwise if f (x0) = 0, then g
defined as g(x0) = 1 and g(x) = 0 for x 6= x0 verifies that f · g = 0. Let m 6= 0 be
the product of all the numbers in the range of f . Define j ∈ BX by j (x) = m/ f (x).
Then f · j = m, the constant function m. Note that the constant function 1 is the
multiplicative identity, and thus φ(1) = 1 and φ(m) = mφ(1) = m1 = m. It follows
that h · φ( j) = φ( f ) · φ( j) = φ( f · j) = φ(m) = m. But then every positive integer
divides m, which is impossible. Thus BX and SX are not isomorphic for any infinite set
X .

Also solved by George Apostolopoulos (Greece), Robert Calcaterra, Bruce S. Burdick, Eugene A. Herman,
Reiner Martin (Germany), Peter McPolin (Northern Ireland), Texas State University Problem Solvers Group, and
the proposer.

Answers

Solutions to the Quickies from page 228.

A1031. The answer is all positive integers n such that 4n − 1 is a composite integer.
Multiplying both sides of 4xy − x + y = n by 4 and adding −1 to both sides leads to
(4x + 1)(4y − 1) = 4n − 1. This implies that 4n − 1 is a positive odd integer. Con-
versely, any composite integer of the form 4n − 1 is always the product in at least one
way of an integer of the form 4x + 1 and an integer of the form 4y − 1 with x, y > 0.
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A1032. By the Mean Value Theorem, there exist d ∈ (a, c) and e ∈ (c, b) such that

f (c)− f (a)

c − a
= f ′(d) and

f (b)− f (c)

b − c
= f ′(e).

Because d < e and f ′ is decreasing, it follows that

f (b)− f (c)

b − c
≤ f (c)− f (a)

c − a
.

Multiplying both sides by (b − c)(c − a) and rearranging gives

(b − c) f (a)+ (c − a) f (b) ≤ (b − a) f (c).


