Practice Test 3-Solutions

1. See problem 9 in chapter 10.
2. Label the points as shown in the picture below, where $A K$ and $B L$ are heights of the triangle $A B C$.

Since $A B=A C$, the triangle $A B C$ is isosceles. $|B C|=1$, therefore $|B K|=\frac{1}{2}$, and by Pythagorean theorem $|A K|=\sqrt{2^{2}-\left(\frac{1}{2}\right)^{2}}=\sqrt{\frac{15}{4}}=\frac{\sqrt{15}}{2}$. Using base $B C$ and height $A K$, the area of triangle $A B C$ is $\frac{1}{2} \cdot 1 \cdot \frac{\sqrt{15}}{2}=\frac{\sqrt{15}}{4}$. On the other hand, using base $A C$ and height $B L$, its area is $\frac{1}{2} \cdot 2 \cdot|B L|=|B L|$. Therefore $|B L|=\frac{\sqrt{15}}{4}$. Then the area of triangle $B C D$ is $\frac{1}{2} \cdot 1 \cdot \frac{\sqrt{15}}{4}=\frac{\sqrt{15}}{8}$.
3. A Hamilton path is shown:

There is no Hamilton cycle because among 9 vertices, 5 are in one set. Thereofe if a Hamilton cycle existed then at least 2 of these 5 would be consecutive in the cycle. However, they cannot be joined because since they are in one set.
4. See problem 19 in chapter 14.

- Hint: see problem 21 in chapter 10.

