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THE
PLAYGROUND

Welcome to the Playground! 
Playground rules are posted 
on page 33, except for the 

most important one: Have fun!

In this section, we highlight problems 
that anyone can play with, regardless of 
mathematical background. But just because 
these problems are easy to approach doesn’t 
mean that they are easy to solve!

Additive Roots (P394). Yevgeniy Sokolovsky 
of Fair Lawn, NJ, asked Playground readers to 
solve this simple-looking equation. Let A be a 
real constant. For what values of x xn1, ,¼  is 
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Two Rights Make What? (P395). As shown in 
fi gure 1, quadrilateral Q has consecutive interior 
angles of t / ,4 t / ,12  and t / ,4  where τ π= 2 .
The lengths of the two edges forming the t / 12
angle are 7539 and 4353 3,  respectively. What 
is the length of the other edge of Q that meets 
the edge of length 4353 3?

This section offers problems with connections 
to articles that appear in the magazine. Not 
all Zip-Line problems require you to read the 
corresponding article, but doing so can never 
hurt, of course.

Finding Feebner (P396). James Propp, author 
of “Who Mourns the Tenth Heegner Number?” 
(p. 18), shared with us a sequence of questions 
that will take you on a similar trajectory to the 

one described in his 
article. Call a number 
a “Feebner” number 
if it is a Fibonacci 
number and it is 
between 2 101000×
and 3 101000× .

1)  Show that there 
is at most one 
Feebner number.

2)  What is the probability that for a randomly 
chosen natural number k, there is a Fibonacci 
number between 2k and 3k?

3)  Determine whether there is a Feebner number.
4)  Find, with proof, an infi nite sequence of 

numbers ln such that for every n, there is no 
Fibonacci number between 2ln and 3ln.

Any type of problem may appear in the Jungle 
Gym—climb on! 

Cramped Buffon (P397). George-Louis Leclerc, 
Comte de Buffon, is well known for having 
computed the probability pc that a unit-length 
“needle” dropped at random onto a plane ruled 
with parallel lines a unit distance apart will 
cross one of the lines. However, imagine now that 
you are performing this experiment not with an 
infi nite plane on which to drop the needle, but 
rather an infi nite strip of paper w units wide, 
with a single line running down its center.

Let P(w) be the probability that a randomly 
dropped needle crosses this center line, under 
the condition that it lands entirely on the 

Figure 1. The ASASA 
property for quadrilaterals?

THE SANDBOX

THE ZIP-LINE

THE JUNGLE GYM
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Picture Perfect (P386). Ioana Mihăilă (Cal Poly 
Pomona) submitted this problem about how she 
accidentally caught a railing in a vacation photo 
she took. She decides to crop the photo to remove 
the railing but can only crop it in a rectangular 
shape with sides parallel to the original photo. 
(See figure 3 for one possible cropping.) Mihăilă 
has two goals: to maximize the area of the 
cropped photo and to preserve the 4:3 ratio of the 
sides of the photo, 
as in the original. 
Determine the 
conditions on 
lengths a and b, 
as shown in the 
figure, that will 
allow her to satisfy 
both goals at once.

We received 
a solution from 
Randy K. Schwartz 

(Schoolcraft College) and a partial solution from 
Vasile Teodorovici (NSERC Canada). Call the 
width and height of the cropped portion (dark 
blue in figures 3 and 4) x and y, respectively. If 
this is a maximal-area crop, then we know that 
the area decreases if we make the cropped area 
w wider and b

a w  less tall, so that the railing 
remains out of the picture. (Figure 4 illustrates 
shifting the crop in this way.) In other words,
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Because this is true for any w no matter how 
small, we conclude that 0≥ −y bx a/ ,  that is, 
that x y a b/ / .³  Symmetrically, considering 
sliding the corner to make the cropped 
region slightly taller but less wide shows that 
x y a b/ / .£  Thus, the maximum crop occurs 
when x y a b/ / ;=  if this also happens when the 
cropped region has the same 4:3 aspect ratio as 
the original photo, we conclude that a / b 4 / 3= .

Benford Again? (P387). In Art Benjamin’s 
article “The Long and Short of Benford’s Law,” 
he introduced a continuous Benford variable 
as a random variable with domain [1,10) and 
probability density f x x( ) ( ln ) .= −10 1

Call a random variable X discretely Benford if 
for each d from 1 to 9, d is the most significant 
digit in the decimal expansion of X with probability 
log ( ) log .10 101d d+ −  Benjamin’s article mentions 
that the product of two continuous Benford 
variables is discretely Benford. Show that any 
positive real constant times a continuous Benford 
variable is also discretely Benford.

We received the following solution from Randy 
K. Schwartz. First note that unless the most 
significant digit of k is d, then there is some m 
such that the most significant digit of kx is d if 
and only if kx d dm m∈ +[ ,( ) ).10 1 10  If the most 
significant 
digit of k is d, 
then let h be 
the fractional 
part of 
k m/ ,10  
where m 
is chosen 
so that the 
quotient is 
between 
1 and 10. 
(The integer 
part of this 

THE CAROUSEL—OLDIES, BUT GOODIES

In this section, we present an old problem 
that we like so much, we thought it deserved  
another go-round. Try this, but be careful—
old equipment can be dangerous. Answers 
appear at the end of the column.

Threedian Triad (C27). By analogy with 
“median,” call a segment connecting a 
vertex of a triangle to a trisection point of 
the opposite side a 
“threedian.” In an 
arbitrary triangle 
ABC, draw successive 
corresponding 
threedians from each 
vertex, as shown 
in figure 2. What 
fraction of the area 
of ABC is the area of 
the triangle bounded 
by these three 
threedians?

Figure 2. A triangle  
with three 
corresponding 
“threedians.”

Figure 3. Cropping a photo 
to remove a linear railing.

4

3

Figure 4. A slight shift to the 
cropping rectangle.

strip of paper, that is, no portion of the needle 
extends outside of the strip. For what value of w 
is P w pc( ) ?=

APRIL WRAP-UP
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quotient is d.) In this case, the most significant 
digit of kx is d if and only if 

kx d h d d d hm m m m∈ + + ∪ ++ +[( ) ,( ) ) [ ,( ) ).10 1 10 10 101 1

Using the given density of x, we have in the 
former case that the probability that the most 
significant digit of kx is d is 
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as desired. Similarly, in the latter case,
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again as desired. Hence, kx is discretely Benford.

Clocks Work (P388). Daniel Heath provided this 
problem extending the setup described in his article 
“Clockwork Mathematics.” In figure 5, the blue cog 
(with 21 teeth) drives the small red cog (with 9), 
which is fixed to the large red cog (with 25); they 
share the same axle. The large red cog drives the 
green cog (with 23). The coupled red cogs provide 
another way of controlling the cogs’ rotation speeds.

1)  How many full turns of the blue cog will be 
required to return all of the cogs to their 
illustrated positions?

2)  Suppose that the main mechanism of a clock 
turns a cog clockwise one full turn per minute; 
this cog is attached the second hand. Design a 
gear system driven by this cog so that another 
cog turns clockwise once per hour (for the 
minute hand) and a third cog turns clockwise 
twice per day (for the hour hand).

We received a solution from Randy K. 
Schwartz and partial solutions from Abrar 
Sheikh (Poolesville HS) and a team from Taylor 

University (Becca 
Griggs, Alexander 
McFarland, Chris 
Netzley). In part 1, it 
takes 69 turns of the 
blue cog to return 
all gears to their 
starting positions. 
The gear train for part 2 pictured in figure 6 was 
submitted by Randy.

As 23 and 25 have no common factor, it takes 
23 full turns of the red gear to return the green 
gear to its original position. Because the greatest 
common divisor of 21 and 9 is 3, it takes three 
full turns of the blue gear to return the red gear 
to its initial position, at which point the red gear 
has turned seven times. As 7 and 23 have no 
common factor, this process must be repeated 
23 times to return the green gear to its original 
position, for 3 23 69× =  turns in all.

The gear train in figure 6 could work for the 
hands of a clock for the following reasons. (a) There 
are an even number of gears from the gray “drive” 
gear to each “hand” (orange for minute, blue 
for hour), so the hands are rotating in the same 
clockwise direction. (b) The gear ratios make the 
orange third gear rotate once for every 60 rotations 
of the drive gear. So, it will rotate once an hour, and 
they make the blue fifth gear rotate once for every 
12 rotations of the third gear. Thus, it will rotate 
once every 12 hours. There are some practical 
difficulties with this gear train, such as the axle 
of the blue gear running through the orange gear 
and the fact that the three “hands” are in different 
locations. For a different kind of challenge, you 
could think about how to overcome these issues.

Spherical Ruler (P389). You are given a solid 
sphere of unknown radius R, on which you can 
make marks, but which you cannot alter in any 
other way. You have calipers that can exactly 
measure the distance between any two points 
in space 
less than 
1.95R 
units 
apart. And 
you have 
a rusty 
compass 
that can 
still draw 
circles but 
is stuck 
at some 
unknown 

9

25

21 23

Figure 5. A gear train with 
coupled cogs.

Image courtesy of geargenerator.com

Figure 6. A possible gear train for a 
clock. 
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radius between 0.5R 
and 1.1R. Describe 
a method for finding 
the exact value of R.

All submitted 
methods that solve 
this problem, 
including ones from 
Randy Schwartz, 
Abrar Sheikh, and 
the proposer, were 
different. We present 
Abrar’s for its 
conceptual simplicity, 
although Randy’s was 

shorter to execute. First, we need to construct 
points A, B, and C that lie on the same great 
circle. This can be done as depicted in figure 
7. Choose point A on the sphere arbitrarily, 

and draw the circle cA (of the fixed radius of 
the rusty compass) centered on A. Choose two 
points D and E on circle cA arbitrarily, and 
draw the circles cD and cE centered on D and 
E. The new intersection point of cD and cE is 
point B. Let the intersection point of cD and cA 
on the opposite side of E be called F and the 
intersection of cE and cA on the opposite side 
of D be called G. Finally, point C is the new 
intersection point of the circles centered on F 
and G. By symmetry, points A, B, and C lie on 
the same great circle.

Now measure distances d AB= ,  e BC= ,  and 
f CA=  with the calipers. These are the three 

sides of a triangle inscribed in a circle of radius 
R. So, by the circumradius formula,

R
def

d e f d e f d e f d e f
=

+ + + − − + − + +( )( )( )( )
.

Figure 7. Constructing 
three points on the 
same great circle.

CAROUSEL SOLUTION

Label the vertices of the inner triangle closest 
to A, B, and C as D, E, and F, respectively, as 
shown in figure 8. Add lines through D parallel 
to EF, through E parallel to FD, and through F 
parallel to DE.

We need to determine where these new lines 
intersect the respective sides of the outer triangle, 
so let p be the fraction of CB cut off by the line 
through F, as shown, and q and r be the respective 
fractions of sides AC and BA, respectively. Then, 
by using two pairs of similar triangles involving 
segments BE and EF, we have that
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Analogously, we also know that 
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These equations simplify to p r= −1 2
9 ,  

r q= −1 2
9 ,  and q p= −1 2

9 ,  which, after 
successive substitutions, yield 9 9 2 02p p− + = .  

Discarding 
the solution 
p = 2 3/ ,  
which would 
correspond 
to F lying on 
DE, we obtain 
p q r= = = 1 3/ .

In other 
words, the 
newly added 
lines go through 
the other 
trisection points. Once we know that, it is 
straightforward to deduce that they also 
bisect the adjacent sides. We can then see 
that like-shaded triangles in the diagram 
are congruent, so the area of ABC outside 
triangle DEF is equal to the area of the three 
parallelograms adjoining DEF. Moreover, 
each of these parallelograms consists of two 
congruent copies of DEF, so the area of DEF 
is exactly one-seventh the area of ABC.

qq

pp

rr

DD EE

FF

Figure 8. The triangle 
with lines parallel to the 
threedians added.
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