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P R O B L E M S

EDUARDO DUEÑEZ, Editor EUGEN J. IONAŞCU, Proposals Editor

University of Texas at San Antonio Columbus State University

JOSÉ A. GÓMEZ, Facultad de Ciencias, UNAM, Mexico; CODY PATTERSON, University

of Texas at San Antonio; RICARDO A. SÁENZ, Universidad de Colima, Mexico; ROGELIO
VALDEZ, Centro de Investigación en Ciencias, UAEM, Mexico; Assistant Editors

.Proposals

To be considered for publication, solutions should be received by November 1, 2019.

2071. Proposed by Ioan Băetu, Botoşani, Romania.

Let n > 1 be an integer, and let Zn be the ring of integers modulo n. For fixed k ∈
Zn − {0}, define a binary operation “◦” on Zn by x ◦ y = (x − k)(y − k) + k for all
x, y ∈ Zn. Let U be the group of units of Zn (under multiplication), and let U ◦

k be the
set of elements of Zn that are invertible under the operation ◦. Characterize those n

with the property that U �= U ◦
k for all k ∈ Zn − {0}.

2072. Proposed by Julien Sorel, Piatra Neamt, PNI, Romania.

(a) Show that the initial value problem{
y ′ = √

1 − y2,

y(0) = 1

has infinitely many solutions defined on R.
(b) By contrast, show that the initial value problem{

y ′ = √
x2 − y2,

y(1) = 1

has no solutions defined on an open interval containing x = 1.
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We invite readers to submit original problems appealing to students and teachers of advanced
undergraduate mathematics. Proposals must always be accompanied by a solution and any relevant
bibliographical information that will assist the editors and referees. A problem submitted as a
Quickie should have an unexpected, succinct solution. Submitted problems should not be under
consideration for publication elsewhere.

Proposals and solutions should be written in a style appropriate for this Magazine.
Authors of proposals and solutions should send their contributions using the Magazine’s sub-

missions system hosted at http://mathematicsmagazine.submittable.com. More detailed instruc-
tions are available there. We encourage submissions in PDF format, ideally accompanied by LATEX
source. General inquiries to the editors should be sent to mathmagproblems@maa.org
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2073. Proposed by Enrique Treviño, Lake Forest College, Lake Forest, IL.

A factorial expansion is any formal expression of the form

akak−1 . . . a2a1,

where a1, a2, . . . , ak are k integers (k ≥ 1) such that 0 ≤ ai ≤ i for i = 1, 2, . . . , k.
The value of such a factorial expansion is

ak · k! + ak−1 · (k − 1)! + · · · + a2 · 2! + a1 · 1!.

If the integers a1, . . . , ak are expressed in base 10 and their digits simply writ-
ten together without separation, the value of the factorial expansion so written is
often ambiguous. For instance, the expansion 10000000000 may be interpreted as hav-
ing coefficients 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 and value 1 × 11! + 0 × (10! + 9! + · · · +
1!) = 11!, or having coefficients 10, 0, 0, 0, 0, 0, 0, 0, 0, 0 and value 10 × 10! + 0 ×
(9! + 8! + 7! + · · · + 1!) = 10 × 10!. Such factorial expansions are called ambigu-
ous. On the other hand, some factorial expansions are unambiguous: for example, the
expansion 311 must have the value 3 × 3! + 1 × 2! + 1 × 1! = 21. Prove that there
are only finitely many unambiguous factorial expansions, and find the one whose value
is largest.

2074. Proposed by Bao Do (student), Columbus State University, Columbus, GA.

Evaluate

lim
n→∞

n∑
k=1

(−1)k+1

k

(
n

k

)
Hk,

where Hk =
k∑

j=1

1

j
is the kth harmonic sum.

2075. Proposed by Michael Goldenberg, The Ingenuity Project, Baltimore Polytechnic
Institute, Baltimore, MD and Mark Kaplan, Towson University, Towson, MD.

Consider the sequence {Cn} defined recursively by C0 = 3, C1 = 1, C2 = 3, and

Cn = Cn−1 + Cn−2 + Cn−3 for n ≥ 3.

Let O = (0, 0, 0) be the origin of R
3 and, for integer n ≥ 0, let Pn be the point

(Cn, Cn+1, Cn+2).

(a) Find the volume of the pyramid OPnPn+1Pn+2 in closed form.
(b) Show that the sequence {Pn} asymptotically approaches a fixed line L through the

origin of R3, and characterize this line.

Quickies

1091. Proposed by H. A. ShahAli, Tehran, Iran.

Show that no more than two straight cuts are needed to split any triangle into three
or fewer pieces that may be rearranged (without overlap or gap) to make a right
triangle.
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1092. Proposed by Ovidiu Furdui and Alina Sı̂ntămărian, Technical University of Cluj-
Napoca, Cluj-Napoca, Romania.

Given a positive integer n, evaluate∫ 1

0

∫ 1

0
arctan

(
xn

yn

)
dx dy.

Solutions

A characterization of Sm as subgroup of Sn for m < n June 2018

2046. Proposed by Ioan Bǎetu, Botoşani, Romania.

For integers m, n such that 1 ≤ m < n, let Sn be the group of all permutations of
{1, 2, . . . , n}, let F be the set of permutations σ ∈ Sn such that σ(m) < σ(m + 1) <

· · · < σ(n), and let T be the set of transpositions in F . Prove that there exists a unique
subgroup G of Sn such that T ⊂ G ⊂ F .

Solution by Joseph DiMuro, Biola University, La Mirada, CA.
We show that the only subgroup G of Sn satisfying the given hypotheses is G = Sm

regarded as the set of permutations in Sn fixing each of m + 1, . . . , n.
First, any transposition σ ∈ Sm satisfies σ(m) ≤ m and σ(i) = i for all i > m,

hence σ(m) ≤ m < m + 1 = σ(m + 1) < · · · < n = σ(n), so σ ∈ T . Therefore, T

contains all transpositions in Sm; thus, G includes the group generated by those trans-
positions, which is Sm itself.

Conversely, we show that G contains no other permutations. Let τ ∈ Sn − Sm

be arbitrary. Since τ �∈ Sm, τ is not the identity permutation, hence there exists
i ∈ {1, . . . , n} such that τ(i) �= i. Since τ �∈ Sm, the largest such i must satisfy
both i ≥ m + 1 and τ(k) = k for k = i + 1, . . . , n. Since τ is injective we can-
not have τ(i) > i, hence τ(i) < i. We have j := τ−1(i) �= i (since τ(i) �= i), and
so j < i by the choice of i as the largest non-fixed point of τ . Thus, we have
j < i but τ(j) = i > τ(i). If j ≥ m, it follows immediately from the definition
of F that τ /∈ F , and hence τ /∈ G a fortiori since G ⊂ F . On the other hand, if
j < m, let σ = (jm) ∈ Sm be the permutation that transposes j and m. Then we
have τσ (m) = τ(j) = i > τ(i) = τσ (i). Since m < i but τσ (m) > τσ(i), we have
τσ �∈ F in this case, and so τσ /∈ G. Since G is a group and σ ∈ Sm ⊂ G, it follows
that τ /∈ G (otherwise we would have τσ ∈ G). Thus, G contains no permutations
τ /∈ Sm, so G = Sm.

Also solved by Paul Budney, Robert Calcaterra, William Cowieson, Dmitry Fleischman, Neville
Fogarty, Abhay Goel, Tom Jager, Peter McPolin (Northern Ireland), Michael Reid, Nikhil Sahoo,
and the proposer. There was 1 incomplete or incorrect solution.

A limit-ratio test for convergence to zero June 2018

2047. Proposed by George Stoica, Saint John, New Brunswick, Canada.

Let (an) be a sequence of nonzero real numbers such that

lim
n→∞ n

(∣∣∣∣ an

an+1

∣∣∣∣ − 1

)
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exists and is strictly positive. Prove or disprove: The sequence (an) is necessarily
convergent.

Solution by Nikhil Sahoo (student), Berkeley City College, Berkeley, CA.
We show that the sequence (an) converges to zero under the weaker hypothesis that
L := lim infn→∞ n(|an/an+1| − 1) is strictly positive.

Lemma. For any positive integers m, n, we have

0 < Pm,n :=
n−1∏
k=1

mk

mk + 1
≤ 1

m
√

n
.

(Per the usual convention on empty products, we let Pm,1 = 1.)
Proof. Clearly, Pm,n > 0. The function x 
→ x/(x + 1) is positive and increasing on
(0, ∞); therefore,

(Pm,n)
m =

m−1∏
j=0

Pm,n =
n−1∏
k=1

m−1∏
j=0

mk

mk + 1
≤

n−1∏
k=1

m−1∏
j=0

mk + j

mk + j + 1
=

mn−1∏
i=m

i

i + 1
= m

mn

= 1

n
.

Taking m-roots of both sides of the inequality above concludes the proof of the lemma.
For fixed M , it follows from the lemma that limn→∞ PM,n = 0 since 1/ M

√
n → 0 as

n → ∞. By the assumption that the limit in the statement of the problem is positive,
there exist positive integers M and N such that n ≥ N implies n(|an/an+1| − 1) ≥
1/M; equivalently,

|an+1| ≤ Mn

Mn + 1
· |an| for all n ≥ N .

It follows by induction that |an| ≤ |aN | · ∏n−1
k=N

[
Mk/(Mk + 1)

] = |aN | · PM,n/PM,N

for n ≥ N . Since limn→∞ PM,n = 0, we see that (an) converges to zero.

Editor’s Note. Christopher Hammond remarked that the value of the limit L =
limn→∞ n(|an/an+1| − 1) is closely related to Raabe’s test for convergence of the
series

∑∞
n=1 an. Christopher N. B. Hammond, The Case for Raabe’s Test, Mathemat-

ics Magazine (forthcoming). The series converges absolutely when L > 1 and diverges
when L < 0. For 0 ≤ L < 1, the series may either diverge or converge conditionally
(Theorem 1 therein). However, if L > 0 then the sequence (an) necessarily converges
to zero as asserted in the statement of the problem (Proposition 2 therein).

Also solved by Ulrich Abel & Vitaliy Kushnirevych (Germany), Robert A. Agnew, Paul Bud-
ney, William Cowieson, Souvik Dey, Joseph DiMuro, Robert L. Doucette, Dmitry Fleischman,
Abhay Goel, Russell Gordon, Christopher N. B. Hammond, Lixing Han, Eugene A. Herman,
Tom Jager, John C. Kieffer, Jimin Kim (South Korea), Elias Lampakis (Greece), Kee-Wai Lau,
Peter McPolin (Northern Ireland), Albert Natian, Northwestern University Math Problem Solv-
ing Group, Moubinool Omarjee (France), Michael Reid, Celia Schacht, Christopher Sinkule, Nora
Thornber, Lawrence R. Weill, and the proposer. There were 2 incomplete or incorrect solutions.

A random triangle with vertices in a three-quarter disk June 2018

2048. Proposed by Julien Sorel, Piatra Neamt, PNI, Romania.
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Three points A, B, C are chosen uniformly at random in the three-quarter disk

Q = {(x, y) ∈ R
2 : x2 + y2 ≤ 1, and either x ≤ 0 or y ≤ 0}

obtained by removing the first quadrant of the unit disk. What is the probability that
the origin O = (0, 0) lies inside �ABC?

Solution by Xueshi Gao (student), Peking University, Beijing, China.
We prove that the event E that O lies inside �ABC has probability P[E] = 5/27.

Let P = (0, 1), R = (1, 0), and α = ∠POA, β = ∠POB, γ = ∠POC, so that
α, β, γ ∈ [0, 3π/4]. Let MX be the diameter through A so AM < AX, and NY the
diameter through C so CN < CY . Consider the event E ′ = E ∩ {α < β < γ } as shown
in the figure below.

By the assumption that O lies inside �ABC, each of the three angles ∠COA, ∠AOB
and ∠BOC must be strictly less than a half revolution. It follows that point A must lie
in the second quadrant, C in sector ROX, and B in sector XOY , that is,

0 ≤ α <
π

2
, α + π < γ ≤ 3

2
π, and γ − π < β < α + π.

Observe that angles α, β, γ are independent and uniformly distributed in [0, 3π/2]
because A, B, C are independent and uniformly distributed in Q; therefore, the prob-
ability of event E ′ is

P
[E ′] =

∫ π
2

0

∫ 3
2 π

α+π

∫ α+π

γ−π

(
2

3π

)3

dβ dγ dα = 5

162
.

By independence of the three random points A, B, C and the fact that event E is invari-
ant under permutations thereof, we have

P
[E] = P

[E ′]
P[{α < β < γ }] = 5/162

1/6
= 5

27
.

Also solved by Herb Bailey & Mark Bailey, Elton Bojaxhiu (Germany) & Enkel Hysnelaj (Aus-
tralia), Robert Calcaterra, Bill Cowieson, Bao Do, Gregory Dresden, John N. Fitch, Neville Fog-
arty, Kyle Gatesman, GWstat Problem Solving Group, Elias Lampakis (Greece), Albert Natian,
Mingyu Park (Korea), Sung Hee Park (Korea), Nikhil Sahoo, Jacob Siehler, Nora S. Thornber,
Lawrence Weill, and the proposer. There were 2 incomplete or incorrect solutions.
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Non-sparse disjoint subsets of any finite collection of squares June 2018

2049. Proposed by Scott Duke Kominers, Harvard University, Cambridge, MA.

Show that any finite set of squares in the plane (possibly of different sizes and not
necessarily disjoint) has a subset consisting of non-overlapping squares that together
cover at least 7% of the area covered by the full set.

Solution by Jimin Kim (student), Institute of Science Education for the Gifted and
Talented, Yonsei University, Republic of Korea.
Let C be the given finite collection of squares. The assertion is trivial when C is empty,
so we assume C is nonempty henceforth. Successively choose squares S1, S2, . . . in C
by the following recursive method:

• Let S1 be any square of largest area in C.
• Having chosen S1, . . . , Si , let Si+1 be any square in C having largest area among

those squares in C that intersect neither of S1, . . . , Si . If there is no such square, the
procedure terminates.

The procedure must terminate after choosing a finite number m ≥ 1 of squares
S1, S2, . . . , Sm since C is finite by hypothesis; because of this, every square in C
intersects some Si . (Were there any squares in C intersecting no Si , any such of largest
area would allow the recursive procedure to continue!) Thus, we have C = ⋃m

i=1 Ni

where Ni (i = 1, . . . , m) denotes the set of squares in C that intersect Si but no Sj

with j < i. Certainly, we have Si ∈ Ni (since Si intersects itself, but is otherwise
chosen not to intersect Sj for any j < i). The sets N1, . . . ,Nm are clearly disjoint by
construction; in particular, the squares S1, . . . , Sm are disjoint. Moreover, Si by choice
has largest area among all squares in Ni ∪ · · · ∪ Nm (which is the set of squares in C
intersecting none of S1, . . . , Si−1); in particular, Si has largest area among all squares
in Ni . We will show that the set consisting of the disjoint squares S1, . . . , Sm covers at
least 7% of the area covered by all squares in C.

Figure 1 The region Ri consisting of points lying at distance no more than d from square
Si = �ABCD . All dashed segments have the same length d = AC .

Let Si be a square �ABCD with side � = AB and diagonal d = √
2� = AC. Any

square Q ∈ Ni intersects Si and has area, hence also diagonal length, not exceeding
that of Si . It follows that Q is fully covered by the region Ri (depicted in Figure 1
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above) consisting of points at distance no more than d from Si . Thus, the region N i

covered by all the squares in Ni is fully covered by Ri , and its area
∣∣∣N i

∣∣∣ satisfies∣∣∣N i

∣∣∣ ≤ |Ri | = (2π + 4
√

2 + 1)|Si |.
(We denote by

∣∣X ∣∣ the area of a region X of the plane.) The collection C covers the
region C = N 1 ∪ · · · ∪ N n, so we have∣∣∣C∣∣∣ =

∣∣∣∣∣
m⋃

i=1

Ni

∣∣∣∣∣ ≤
m∑

i=1

∣∣∣N i

∣∣∣ ≤ (2π + 4
√

2 + 1)

m∑
i=1

|Si |.

Therefore, the disjoint squares S1, . . . , Sm cover an area
m∑

i=1

|Si | ≥ 1

2π + 4
√

2 + 1

∣∣∣C∣∣∣ = 0.077 · · · ×
∣∣∣C∣∣∣

> 0.07 ×
∣∣∣C∣∣∣ .

Also solved by Elton Bojaxhiu (Germany) & Enkel Hysnelaj (Australia), Robert Calcaterra,
Kyle Gatesman, Abhay Goel, Sarah Kapinos & J. Todd Lee, Northwestern University Math Prob-
lem Solving Group, Nikhil Sahoo, Celia Schacht, Lawrence R. Weill, and the proposer.

Counting de Bruijn sequences of pairs of three symbols June 2018

2050. Proposed by Sung Soo Kim, Hanyang University, Ansan, Korea.

Find the number of sequences a1, a2, . . . , a9 in {1, 2, 3} such that

(i) a1 = a2 = 1, and
(ii) the nine pairs (a1, a2), (a2, a3), . . . , (a8, a9), (a9, a1) are the same as the nine pairs

(1, 1), (1, 2), . . . , (3, 2), (3, 3) in some order.

Solution by Skidmore College Problem Group, Saratoga Springs, NY.

Figure 2 Graph A (left) and graph B (right).

We show that there are 24 such sequences. This problem amounts to finding the num-
ber of cycles traversing each edge (i.e., Eulerian cycles) in the directed graph A on
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the left of Figure 2 above, beginning with the loop (1, 1): The sequences a1 = 1, a2 =
1, a3, . . . , a9 of vertices (excluding the final return vertex a10 = 1 = a1) in such a cycle
are precisely those considered in the problem. We call these “a-cycles.” There is a
four-to-one correspondence between the set of a-cycles and the set of Eulerian cycles
successively visiting vertices 1 = b1, b2, . . . , b6 of graph B on the right of Figure 2
above, starting at vertex 1 (and eventually traversing all edges, returning to vertex
b7 = 1 = b1). We refer to the latter as “b-cycles.” Indeed, given an a-cycle α we may
simply remove the loops (1, 1), (2, 2), (3, 3) from α to obtain a b-cycle β; conversely,
given a b-cycle β, simply add the loop (1, 1) at the beginning of β, insert the loop
(2, 2) at either of the two occasions when vertex 2 is visited, and the loop (3, 3) at
either of the two occasions when vertex 3 is visited—this gives four different a-cycles
α1, α2, α3, α4 the removal of whose loops results in β. We proceed to count the number
of distinct b-cycles.

With graph B as depicted, we call directed edges (1, 2), (2, 3), and (3, 1) inner, and
edges (2, 1), (3, 2), and (1, 3) outer. A moment’s reflection shows that, given a vertex
bi of any path on graph B, the next vertex bi+1 is uniquely determined by specifying
whether bi+1 is reached from bi by traversing an inner or an outer edge. The set of
b-cycles is partitioned into the disjoint sets of inner b-cycles that start with the inner
edge b1 = 1 → 2 = b2, and the set of outer b-cycles that start with the outer edge
b1 = 1 → 3 = b2. Given the identical role played by vertices 2 and 3 in the problem,
it is clear that there are equally many inner and outer b-cycles. (Exchanging the labels
of vertices 2 and 3 is a bijection between the sets of inner and outer b-cycles.) Thus, it
suffices to count inner b-cycles. These are easily seen to be encoded by the sequences

ioooii, iioooi, iiiooo

(where “i” means “follow inner edge,” while “o” means “follow outer edge”), corre-
sponding to the b-cycles:

1 → 2 → 1 → 3 → 2 → 3(→ 1),

1 → 2 → 3 → 2 → 1 → 3(→ 1),

1 → 2 → 3 → 1 → 3 → 2(→ 1).

Thus, there are 3 distinct inner b-cycles, while the number of b-cycles is 2 · 3 = 6, and
the number of a-cycles (hence of sequences solving the problem) is 4 · 6 = 24.

Editor’s Note. Rob Pratt remarked that the problem asks for the number of de
Bruijn sequences of order n = 2 over an alphabet of k = 3 symbols, of which there
are k!k

n−1
/kn in general, and in particular 3!32−1

/32 = 24 in this problem. (T. van
Aardenne-Ehrenfest and N. G. de Bruijn, Circuits and trees in oriented linear graphs.
Simon Stevin 28 (1951) 203–217.) Jacob Siehler brought to our attention that the
twenty-four sequences and the general formula above appeared in this Magazine.
(Anthony Ralston, De Bruijn sequences—A model example of the interaction of dis-
crete mathematics and computer science, Mathematics Magazine 55 (1982) 131–143.)

Also solved by Skyler Addy & Zachary Parker, Brian D. Beasley, Elton Bojaxhiu (Germany)
& Enkel Hysnelaj (Australia), Robert Calcaterra, Timothy Crane, Dmitry Fleischman, Neville
Fogarty, Abhay Goel, Eugene A. Herman, Dain Kim (Korea), Brad Meyer, Ioana Mihăilă, North
Carolina Wesleyan College Fall 2018 MAT 318 Discrete Methods Class, Rob Pratt, Nikhil Sahoo,
Joel Schlosberg, Jacob Siehler, David Stone & John Hawkins, Lawrence R. Weill, and the proposer.
There was 1 incomplete or incorrect solution.
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Answers
Solutions to the Quickies from pages 231 and 232.

A1091. Label the vertices of the given triangle �ABC so ∠C is its largest angle; thus,
∠A and ∠B are both acute. Let K be the midpoint of BC and L the midpoint of AC.
Choose P on AB so LP is perpendicular to AB. Note that P lies on side AB since ∠A

and ∠B are both acute. Cut triangle �ABC along segments KP and LP thus splitting it
into triangles �ALP, �BKP and quadrilateral CKPL. Keeping the quadrilateral fixed,
rotate the right triangle �ALP half a revolution about L to obtain a new triangle �CLQ,
and triangle �BKP half a revolution about K to obtain triangle �CKR. In doing so we
obtain a triangle �PQR with angle ∠Q right. (This construction works even if the
original triangle was a right triangle to begin.)

A1092. We show that the double integral has the value π/4 for all n. Swapping the
order of integration and the names of the variables x, y, we have

I =
∫ 1

0

∫ 1

0
arctan

(
xn

yn

)
dx dy =

∫ 1

0

∫ 1

0
arctan

(
yn

xn

)
dx dy.

From the identity arctan(t) + arctan(1/t) = π/2 (valid for t > 0), we obtain

I = 1

2

∫ 1

0

∫ 1

0

[
arctan

(
xn

yn

)
+ arctan

(
yn

xn

)]
dx dy = 1

2

∫ 1

0

∫ 1

0

π

2
dx dy = π

4
.

Tribus Puzzle

How to play. Fill each of the three-by-three squares with either a 1, 2, or 3 so that each
number appears exactly once in each column and row. Some cells apply to more than
one square, as the squares overlap. Each of the three-by-three squares must be distinct.
The solution can be found in page 172.

— David Nacin, William Paterson University, Wayne, NJ (nacind@wpunj.edu)


