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P R O B L E M S

EDUARDO DUEÑEZ, Editor EUGEN J. IONAŞCU, Proposals Editor

University of Texas at San Antonio Columbus State University

JOSÉ A. GÓMEZ, Facultad de Ciencias, UNAM, Mexico; CODY PATTERSON, Texas State Uni-

versity; RICARDO A. SÁENZ, Universidad de Colima, Mexico; ROGELIO VALDEZ, Centro de

Investigación en Ciencias, UAEM, Mexico; Assistant Editors

Problem 2067 Updated Editor’s Note. The statement of Problem 2067 that appeared
in the April 2019 issue omitted the critical hypothesis that chord MN goes through P .
We sincerely regret the mistake, and thank Robert Calcaterra for bringing it to our
attention. The corrected statement of Problem 2067 appears below.

2067. Proposed by Elton Bojaxhiu, Eppstein am Taunus, Germany and Enkel Hysnelaj,
Sydney, Australia.

Chord XY of a circle C is not a diameter. Let P, Q be two different points strictly inside
XY such that Q lies between P and X. Chord MN through P is perpendicular to the
diameter of C through Q, where MP < NP. Prove that (MQ− PQ) · XY ≥ 2 ·QX · PY ,
and characterize those cases in which equality holds.

Proposals

To be considered for publication, solutions should be received by March 1, 2020.

2076. Proposed by Michael Goldenberg, The Ingenuity Project, Baltimore Polytechnic
Institute, Baltimore, MD and Mark Kaplan, Towson University, Towson, MD.

Given real numbers C0, C1, and C2, one defines a general Tribonacci (GT) sequence
{Cn} recursively by the relation Cn+3 = Cn+2 + Cn+1 + Cn for all n ≥ 0. Such GT-
sequence {Cn} is nonsingular if

� =
∣∣∣∣∣∣
C0 C1 C2

C1 C2 C3

C2 C3 C4

∣∣∣∣∣∣ �= 0.
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We invite readers to submit original problems appealing to students and teachers of advanced
undergraduate mathematics. Proposals must always be accompanied by a solution and any relevant
bibliographical information that will assist the editors and referees. A problem submitted as a
Quickie should have an unexpected, succinct solution. Submitted problems should not be under
consideration for publication elsewhere.

Proposals and solutions should be written in a style appropriate for this Magazine.
Authors of proposals and solutions should send their contributions using the Magazine’s sub-

missions system hosted at http://mathematicsmagazine.submittable.com. More detailed instruc-
tions are available there. We encourage submissions in PDF format, ideally accompanied by LATEX
source. General inquiries to the editors should be sent to mathmagproblems@maa.org.
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A dual Tribonacci (DT) sequence {Dn} is one that satisfies the dual recurrence
Dn+3 + Dn+2 + Dn+1 = Dn for n ≥ 0. Show that for any nonsingular GT-sequence
{Cn} with C0, C1, C2 positive there exists a DT-sequence {Dn} such that, for all n ≥ 0,

arctan

(√
Dn

Cn

)
= arctan

(√
Dn

Cn+1

)
+ arctan

(√
Dn

Cn+2

)
+ arctan

(√
Dn

Cn+3

)
.

2077. Proposed by Li Zhou, Polk State College, Winter Haven, FL.

Prove that in any triangle with side lengths a, b, c, inradius r , and circumradius R, we
have

a

b + c
+ b

c + a
+ c

a + b
+ r

R
>

5

3
.

2078. Proposed by Florin Stanescu, Serban Cioculescu School, Gaesti, Romania.

Let A, B be n × n complex matrices such that A2 + B2 = 2AB. Prove that (AB −
BA)m = 0 for some m ≤ ⌈

n

2

⌉
.

2079. Proposed by Ovidiu Furdui and Alina Sı̂ntămărian, Technical University of Cluj-
Napoca, Cluj-Napoca, Romania.

Given real numbers a, b, with b > 0, prove that the integral

J (a, b) :=
∫ ∞

0

[
2+ (x + a) ln

(
x

x + b

)]
dx

converges if and only if a = 1 and b = 2, and find the value J (1, 2).

2080. Proposed by the UTSA Problem Solving Club, University of Texas at San Anto-
nio, San Antonio, TX.

For n ≥ 3, let Wn be the wheel graph consisting of an n-cycle all whose vertices are
joined to an additional distinct vertex.

(i) How many colorings of the 2n edges of Wn using k ≥ 2 colors result in no
monochromatic triangles?

(ii) Regard two colorings of Wn as equivalent if there is a graph automorphism of Wn

that maps the first coloring to the second. If k ≥ 2 and p > 3 is prime, count all
non-equivalent colorings of Wp using k colors.

Quickies

1093. Proposed by Mihaly Bencze, Brasov, Romania.

Show that 20192n can be expressed as a sum of ten different positive squares, for every
positive integer n.

1094. Proposed by Julien Sorel, Piatra Neamt, PNI, Romania.

The curve 2 sin(x + y) − cos(x − y) = 1 has a self-intersection point at (π/4, π/4)

as shown in the figure below. Find the angle between the two tangent lines to the curve
at this point.
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Solutions

The largest roots of a sequence of polynomials October 2018

2051. Proposed by Ángel Plaza, Universidad de Las Palmas de Gran Canaria, Spain.

For any positive integer n consider the polynomial Pn(x) = x4 − nx3 − nx2 − nx + 1
and let an be the largest of its real roots. Find

lim
n→∞

a1 + a2 + · · · + an

n2
.

Solution by José Heber Nieto, Universidad del Zulia, Maracaibo, Venezuela.
We show that the limit exists and equals 1/2. If x ≥ n+ 1, then

Pn(x) = (x − n)x3 − nx2 − nx + 1 ≥ 1x3 − nx2 − nx + 1

= (x − n)x2 − nx + 1 ≥ 1x2 − nx + 1 = (x − n)x + 1

≥ 1x + 1 ≥ n+ 2 > 0.

On the other hand, Pn(n) = −n3 − n2 + 1 < 0. By continuity of Pn and the interme-
diate value theorem, it follows that n < an < n+ 1; hence,

n2 + n

2n2
= 1

n2

n∑
i=1

i <
1

n2

n∑
i=1

ai <
1

n2

n∑
i=1

(i + 1) = n2 + 3n

2n2
.

The first and last expressions above have the same limit 1/2 as n tends to infinity. By
the sandwich theorem,

lim
n→∞

1

n2

n∑
i=1

ai = 1

2
.

Also solved by Ulrich Abel (Germany), Terrance Alvarez & Cyane Gonzalez, Michael A. Ask,
Michel Bataille (France), Necdet Batir (Turkey), Brian D. Beasley, Anthony J. Bevelacqua, Robert
Calcaterra, Robin Chapman (UK), Jyoti Champanerkar, John Christopher, Michael P. Cohen, Bill
Cowieson, Antonella Cupillari, Richard Daquila, Robert L. Doucette, Dmitry Fleischman, Charles
Fleming, Natacha Fontes-Merz, Michael Goldenberg & Mark Kaplan, Abhay Goel, Dean Gooch,
Lixing Han, Kyle Hansen, GWstat Problem Solving Group, Eugene A. Herman, Theo Koupelis,
Elias Lampakis (Greece), Jeffery M. Lewis, James Magliano, Peter McPolin (Northern Ireland),
Northwestern University Math Problem Solving Group, Michael Reid, Volkhard Schindler, Joel
Schlosberg, Edward Schmeichel, Mark Schultz, Randy K. Schwartz, Achilleas Sinefakopoulos
(Greece), Nicholas C. Singer, Albert Stadler (Switzerland), David Stone & John Hawkins, Koopa
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Tak Lun Koo (Hong Kong), The Iowa State Undergraduate Problem Solving Group, Michael Vowe
(Switzerland), John Zacharias, and the proposer. There was one incomplete or incorrect solution.

A pencil of lines obtained from any scalene triangle October 2018

2052. Proposed by Michel Bataille, Rouen, France.

Let	ABC be a scalene triangle. Let D be a variable point on line
←→
BC such that D �= B

and D �= C. Let E lie on
←→
BC so

←→
AE is the reflection of

←→
AD across the bisector of angle

∠BAC. Let O1, O2 be the circumcenters of triangles 	ABD and 	ACE, respectively.
Prove that there exists a point P , independent of the choice of D, such that line

←−→
O1O2

passes through P .

Solution by Peter McPolin, St. Mary’s University College, Northern Ireland.
Let the bisector of angle ∠BAC intersect BC at Q. Since 	ABC is not isosceles, the
perpendicular bisector � of the segment AQ is not parallel to

←→
BC . The point P of

intersection of � and
←→
BC depends only on the choice of the triangle 	ABC. We show

that O1, O2, and P are collinear. Let γ be the circle with centre P passing through A

(hence also through Q). We prove that the points B and C are inverses with respect
to γ .

In the figure above (where AB < AC, which may be assumed to hold without loss
of generality), we have ∠PAB + ∠BAQ = ∠PAQ = ∠AQP (	PAQ is isosceles with
PA = PQ), ∠BAQ = ∠QAC (AQ is the bisector of angle ∠BAC), ∠AQP = ∠QAC +
∠ACQ (∠AQP is an exterior angle of triangle 	QAC), and so ∠PAB = ∠ACQ =
∠ACP. Thus, triangles 	PAB and 	PCA are similar; hence, PB/PA = PA/PC, so
PB · PC = PA2, showing that B and C are inverses with respect to γ .

If D lies on the half-line
−→
PQ then, by construction of E from D, the same line

←→
AQ

bisects angle ∠EAD, so the argument above proves that D and E are inverses with

respect to γ . If D lies on the other half-line
−−→
PQ′, where Q′ is the diametrical opposite

of Q on γ , the same conclusion follows upon replacing Q by Q′ in the preceding argu-
ment. (If D = P then the reflection of

←→
AD on

←→
AQ is parallel to

←→
BC, so E is undefined—

it may be conventionally regarded as the point at infinity, inverse with respect to γ of
its center P .) Inversion with respect to γ fixes A, so this inversion transforms the cir-
cumcircle δ of triangle	ABD into the circumcircle ε of triangle	ACE. Evidently, the
circles γ, δ, ε are coaxial, so their centers P , O1, and O2 are collinear; moreover, as
indicated above, P is independent of the choice of D.

Also solved by Andrea Fanchini (Italy), Elias Lampakis (Greece), José H. Nieto (Venezuela),
Achilleas Sinefakopoulos (Greece), Elton Bojaxhiu (Albania) & Enkel Hysnelaj (Australia) Peter
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McPolin (Northern Ireland), Lienhard Wimmer (Germany), Theo Koupelis, Kyle Gatesman and
the proposer. There was one incomplete or incorrect solution.

Maximally deranged permutations October 2018

2053. Proposed by Sung Soo Kim, Hanyang University, Korea.

Let a = (a1, a2, . . . , a2018) be a permutation of the integers 1, 2, . . . , 2018. For any
integer k in the range 1 ≤ k ≤ 2018, let lk(a) be the length of the longest monotone
subsequence of (ak, ak+1, . . . , a2018) whose first term is ak, and let L(a) =∑2018

k=1 lk(a).
Find the minimum value of L(a) as a ranges over all permutations of 1, 2, . . . , 2018.

Solution by Michael Reid, University of Central Florida, Orlando, FL.

The minimum value is
∑2018

k=1

⌈√
k
⌉
= 61 440. We need the following well-known

result from combinatorics.
Theorem [P. Erdős, G. Szekeres, A combinatorial problem in geometry, Compositio

Mathematica, 2 (1935) 463–470, https://eudml.org/doc/88611]
Let r, s be natural numbers. A sequence of distinct real numbers having length

> rs has either an increasing subsequence of length > r , or a decreasing subsequence
of length > s.

Proof. For a sequence a= (a1, a2, . . . , an) with n>rs, define f, g : {1, . . . , n} →
N as follows: f (i) (resp., g(i)) is the length of the longest increasing (resp., decreas-
ing) subsequence of (ai, . . . , an) with first term ai . The pairs (f (i), g(i)) as i varies
are all distinct: If i < j and ai < aj (resp., ai > aj ), then f (i) > f (j) (resp.,
g(i) > g(j)). By the pigeonhole principle, since n > rs, the pairs (f (i), g(i)) can-
not all lie in {1, . . . , r} × {1, 2, . . . , s}; thus, either f (i) > r or g(i) > s for some i,
whence the conclusion of the theorem follows immediately.

Resuming the solution, for n ∈ N and any sequence a = (a1, a2, . . . , an) of dis-
tinct real numbers, define lk(a) as the length of the longest monotone subsequence of
(ak, ak+1, . . . , an) whose first term is ak, and L(a) as

∑n

k=1 lk(a). By induction on n,
we will show that

L(a) ≥ M(n) :=
n∑

k=1

⌈√
k
⌉

(∗)

for every such sequence a of length n. For n = 1, inequality (∗) holds since both its
sides are equal to 1. Next, suppose inequality (∗) holds for all sequences of some
fixed length n, and let a be a sequence of length n+ 1. For r = s = ⌈√

n+ 1
⌉− 1,

the sequence a has length n+ 1 ≥ rs + 1 > r2, so its longest monotone subsequence
has length (at least) r + 1 = ⌈√

n+ 1
⌉

. Let ai be the first term of a longest such
subsequence, so li(a) ≥ ⌈√

n+ 1
⌉

, and let â = (a1, . . . , ai−1, ai+1, . . . , an+1) be the
length-n sequence obtained from a by deleting the term ai . For i < k ≤ n+ 1, we have
lk(a) = lk−1(â) (= length of the longest monotone subsequence of (ak, ak+1, . . . , an+1)

whose first term is ak). For 1 ≤ k < i, we have lk(a) ≥ lk(â) because any monotone
subsequence of â starting at ak is also a monotone subsequence of a starting at ak.

https://eudml.org/doc/88611
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It follows that

L(a) = li(a)+
i−1∑
k=1

lk(a)+
n+1∑

k=i+1

lk(a) ≥
⌈√

n+ 1
⌉
+

i−1∑
k=1

lk(â)+
n+1∑

k=i+1

lk−1(â)

=
⌈√

n+ 1
⌉
+

n∑
k=1

lk(â) =
⌈√

n+ 1
⌉
+ L(â)

≥
⌈√

n+ 1
⌉
+M(n) = M(n+ 1),

by the assumed validity of (∗) for the length-n sequence â. This completes the induc-
tive proof of (∗) for all n ≥ 1.

Call a sequence a = (a1, a2, . . . , an) of n distinct numbers deranged if lk(a) ≤⌈√
n+ 1− k

⌉
for 1 ≤ k ≤ n. A deranged sequence satisfies the inequality L(a) ≤∑n

k=1

⌈√
n+ 1− k

⌉ = M(n). By inequality (∗), a deranged sequence actually satis-
fies that L(a) = M(n) is minimum among all sequences of length n.

First, we construct deranged sequences whose length n is an arbitrary perfect
square. Any sequence of length 12 = 1 is deranged. Assume a deranged sequence a of
length n = t2 has been constructed; we proceed to construct a deranged sequence â of
length N = (t + 1)2. For any choice of b1, b2, . . . , bt , bt+1 and c1, c2, . . . , ct such that
min{a1, . . . , an} > b1 > b2 > · · · > bt+1 and max{a1, . . . , an} < c1 < c2 < · · · < ct ,
construct the sequence

â = (b1, b2, . . . , bt+1, c1, c2, . . . , ct , a1, a2, . . . , an),

which we proceed to show is deranged. The sequence â has length (t + 1)+ t + t2 =
(t + 1)2 = N . Consider a monotone subsequence of â starting at some bi = âi . If the
subsequence contains a second term bj , then it is necessarily decreasing, and thus a
subsequence of (b1, b2, . . . , bt+1) (since each bj is less than every ak and every ci by
construction) and hence has length at most t + 1. If the subsequence does not con-
tain a second term bj , but contains a term cj , then it is necessarily increasing, so
it is a subsequence of (bi, c1, c2, . . . , ct ) (since each cj is greater than every ak by
construction), and thus has length at most t + 1. If the subsequence does not con-
tain a second term bj , nor any term cj , then it consists of bi followed by a decreas-
ing subsequence of a; such a subsequence starting with bi has length at most 1 +
max{l1(a), . . . , ln(a)} ≤ 1 + t . Hence, lk(â) ≤ t + 1 = ⌈√

N + 1− k
⌉

for 1 ≤ k ≤
t + 1. Similar consideration of a monotonic subsequence starting with some ci =
ât+1+i shows that lk(â) ≤ ⌈√

N + 1− k
⌉

for t + 2 ≤ k ≤ 2t + 1. For 2t + 1 < k ≤ n,
we have lk(â) = lk−(2t+1)(a) ≤ ⌈√

n+ 1− (k − (2t + 1))
⌉ = ⌈√

N + 1− k
⌉

since a

is deranged by hypothesis, hence â is a deranged sequence of length N = (t + 1)2.
To obtain a deranged sequence a of arbitrary (non-square) length n, it suffices to

take the last n terms of a deranged sequence of length t2 ≥ n. Finally, to obtain a
deranged permutation of {1, 2, . . . , n}, let a be a length-n deranged sequence and
let σ ∈ Sn be the “sorting” permutation of a, so aσ(1) < aσ(2) < · · · < aσ(n). The
sequence σ−1 = (σ−1(1), σ−1(2), . . . , σ−1(n)) has the same relative ordering as the
sequence (a1, a2, . . . , an), and thus σ−1 is a deranged permutation of {1, 2, . . . , n}.
To conclude the solution, let a be a deranged permutation of {1, 2, . . . , 2018}. Then,
L(a) = M(2018) = 61 440 is minimum among all permutations.

Also solved by José Nieto (Venezuela), and the proposer. There were 2 incomplete or incorrect
solutions.
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A second-moment inequality when first moment is zero October 2018

2054. Proposed by Florin Stanescu, Şerban Cioiculescu school, Găeşti, Romania.

Let f : [0, 1] → R be differentiable with bounded derivative. If
∫ 1

0 xf (x)dx = 0,
prove that

36 ·
∣∣∣∣
∫ 1

0
x2f (x)dx

∣∣∣∣ ≤ sup
x∈[0,1]

|f ′(x)|.

Solution by Lixing Han, University of Michigan-Flint, Flint, MI.
Integrating by parts, we have

∫ 1

0
x2f ′(x) dx = x2f (x)

∣∣1

0
− 2

∫ 1

0
xf (x) dx = f (1),

since
∫ 1

0 xf (x) dx = 0 by hypothesis. Integrating by parts again:

∫ 1

0
x2f (x) dx = 1

3
x3f (x)

∣∣1

0
− 1

3

∫ 1

0
x3f ′(x) dx = 1

3
f (1)− 1

3

∫ 1

0
x3f ′(x) dx.

Solving for f (1) in this equation and combining with the first above, we obtain
∫ 1

0
x2f (x) dx = 1

3

∫ 1

0
x2f ′(x) dx − 1

3

∫ 1

0
x3f ′(x) dx = 1

3

∫ 1

0
(x2 − x3)f ′(x) dx.

Therefore,∣∣∣∣
∫ 1

0
x2f (x) dx

∣∣∣∣ = 1

3

∣∣∣∣
∫ 1

0
(x2 − x3)f ′(x) dx

∣∣∣∣ ≤ 1

3

∫ 1

0
(x2 − x3)

∣∣f ′(x)
∣∣ dx

≤ 1

3

∫ 1

0
(x2 − x3) dx · sup

0≤x≤1
|f ′(x)| = 1

36
· sup

0≤x≤1
|f ′(x)|.

The inequality asserted in the statement of the problem follows immediately.

Also solved by Ulrich Abel (Germany), Michel Bataille (France), Robin Chapman (UK), Gary
Chung, Michael P. Cohen, Robert Calcaterra, William Cowieson, Souvik Dey, Robert Doucette,
Eugene Herman, Elgin Johnston, Koopa Koo (Hong Kong), Elias Lampakis (Greece), Kee-Wai Lau
(Hong Kong), Joel Schlosberg, Ioannis Sfikas (Greece), Nicholas Singer, Albert Stadler (Switzer-
land), Michael Vowe (Switzerland), Scott Wolf, Shazeena Ashraf, Robert Summers, Braeden Duke
& Matthew Cullum and the proposer.

Cyclic groups via characteristic subgroups October 2018

2055. Proposed by Ioan Bǎetu, Botoşani, Romania.

Let n be a cube-free positive integer. Assume that G is a finite group of order n such
that for every subgroup H of G and every automorphism f of H , the equality K =
{f (x) : x ∈ K} holds for every subgroup K of H . Prove that G is cyclic.

Solution by Anthony J. Bevelacqua, University of North Dakota, Grand Forks, ND.
Suppose x, y ∈ G satisfy 〈x〉 ∩ 〈y〉 = {1}. By hypothesis, the conjugation automor-
phism z �→ x−1zx of G fixes 〈y〉, hence x−1yx ∈ 〈y〉, and similarly y−1x−1y ∈
〈x−1〉 = 〈x〉. It follows that x−1y−1xy ∈ 〈x〉 ∩ 〈y〉 = {1}, so x and y commute.
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Next, we show that, for any prime p dividing n, a Sylow p-subgroup P of G is
cyclic. Denote by Ck the cyclic group of order k ≥ 1. Since n is cube-free, P has order
p or p2; thus, P is isomorphic to one of the cyclic groups Cp, Cp2 , or the non-cyclic
group Cp × Cp. The subgroup Cp × {1} of Cp × Cp is not fixed by the automorphism
(x, y) �→ (y, x); thus, the hypothesis on G implies that P is not isomorphic to Cp ×
Cp, so P is cyclic.

To conclude the proof, let p1, . . . , pr be the distinct primes dividing n. For j =
1, . . . , r , let xj be a generator of a Sylow pj -subgroup of G. By the first Sylow
theorem, we have |x1| · · · |xr | = n. The elements x1, . . . , xr have pairwise coprime
orders, hence generate groups with pairwise trivial intersection. By the argument in the
first paragraph above, these elements commute pairwise, and furthermore |x1 · · · xr | =
|x1| · · · |xr | = n. Hence, G is cyclic generated by x1 · · · xr .

Editor’s Note. Michael Reid pointed out that the hypothesis that G is finite may be
relaxed to finitely generated (but not to infinitely generated). The conclusion that G is
cyclic then follows from a more delicate argument using Baer’s theorem.

Also solved by Robert Calcaterra, Robert Doucette, Abhay Goel, Koopa Koo (Hong Kong),
José Nieto (Venezuela), Michael Reid, Nikhil Sahoo, Jacob Siehler, and the proposer.

Answers (Solutions to the Quickies from page 311.)

A1093. We have

20192 = 14802 + 9692 + 5552 + 4852 + 4552 + 3002 + 2002 + 1852 + 1502 + 1002.

Therefore, for all n > 0, letting m = n− 1 ≥ 0,

20192n=20192(m+1)=20192 · 20192m

=(14802+9692+5552+4852+4552+3002+2002+1852+1502+1002) ·20192m

=(1480 ·2019m)2+(969 ·2019m)2+(555 ·2019m)2+(485 ·2019m)2

+(455 ·2019m)2+(300 ·2019m)2+(200 ·2019m)2+(185 ·2019m)2

+(150 ·2019m)2+(100 ·2019m)2.

A1094. Implicit differentiation with respect to x gives 2(1 + y ′) cos(x + y) + (1 −
y ′) sin(x − y) = 0; hence,

ν := y ′ + 1

y ′ − 1
= sin(x − y)

2 cos(x + y)
.

Using trigonometric identities and the relation 2 sin(x + y) − cos(x − y) = 1, we
obtain

ν2 = sin2(x − y)

4 cos2(x + y)
= [1+ cos(x − y)][1− cos(x − y)]

4[1+ sin(x + y)][1− sin(x + y)]

= 2 sin(x + y)

2[1+ sin(x + y)]
· 1− cos(x − y)

2− 2 sin(x + y)
= sin(x + y)

1+ sin(x + y)
.

Thus, at the double point (π/4, π/4), we have ν2 = sin(π/2)/[1+ sin(π/2)] = 1/2,
so ν = ±1/

√
2. Either of the tangent line slopes m = y ′ at the double point is related

to the respective inclination angle θ by m = tan θ , while ν = (tan θ + 1)/(tan θ −
1) = tan(−θ − π/4). It follows that the angle sought, equal to the difference of
the inclination angles θ1, θ2, is equal to θ2 − θ1 = (−π/4 − θ1) − (−π/4 − θ2) =
arctan(1/

√
2)− arctan(−1/

√
2) = 2 arctan(1/

√
2) ≈ 70.53◦.


