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PROBLEMS AND SOLUTIONS

Edited by Gerald A. Edgar, Daniel H. Ullman, Douglas B. West
with the collaboration of Paul Bracken, Ezra A. Brown, Zachary Franco, Christian Friesen,
László Lipták, Rick Luttmann, Frank B. Miles, Lenhard Ng, Kenneth Stolarsky, Richard
Stong, Daniel Velleman, Stan Wagon, Elizabeth Wilmer, Fuzhen Zhang, and Li Zhou.

Proposed problems should be submitted online at
americanmathematicalmonthly.submittable.com/submit.

Proposed solutions to the problems below should be submitted by November 30,
2019, via the same link. More detailed instructions are available online. Proposed
problems must not be under consideration concurrently at any other journal nor be
posted to the internet before the deadline date for solutions. An asterisk (*) after the
number of a problem or a part of a problem indicates that no solution is currently
available.

PROBLEMS

12125. Proposed by James Propp, University of Massachusetts, Lowell, MA.
(a) In the picture at right, nine equally
spaced points on a circle are joined by
nine chords, forming seven triangles.
Show that the sum of the areas of the
three outermost black triangles plus
the area of the innermost (equilateral)
black triangle equals the sum of the
areas of the other three triangles.
(b) Part (a) can be phrased as the asser-
tion that a certain self-intersecting 9-gon has signed area zero. For what values of n does
there exist a self-intersecting n-gon of signed area zero whose vertices coincide with the
vertices of a regular n-gon?

12126. Proposed by Marian Tetiva, National College “Gheorghe Roşca Codreanu,” Bı̂rlad,
Romania. Let P(n) be the greatest prime divisor of the positive integer n. Prove that
P(n2 − n + 1) < P (n2 + n + 1) and P(n2 − n + 1) > P (n2 + n + 1) each hold for
infinitely many positive integers n.

12127. Proposed by Ovidiu Furdui and Alina Sı̂ntămărian, Technical University of Cluj-
Napoca, Cluj-Napoca, Romania. Calculate∫ 1

0

(
Li2(1) − Li2(x)

1 − x

)2

dx,

where Li2 denotes the dilogarithm function, defined by Li2(z) = ∑∞
k=1 zk/k2.

12128. Proposed by Omran Kouba, Higher Institute for Applied Sciences and Technology,
Damascus, Syria. Let Fn be the nth Fibonacci number, defined by F0 = 0, F1 = 1, and
Fn+1 = Fn + Fn−1 for n ≥ 1. Find, in terms of n, the number of trailing zeros in the
decimal representation of Fn.

doi.org/10.1080/00029890.2019.1621132
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12129. Proposed by Hideyuki Ohtsuka, Saitama, Japan. Compute√√√√
2 +

√
2 +

√
2 + · · · +

√
2 − √

2 + · · · ,

where the sequence of signs consists of n − 1 plus signs followed by a minus sign and
repeats with period n.

12130. Proposed by Dan Ştefan Marinescu, Hunedoara, Romania, and Mihai Monea,
Deva, Romania. Let P be a point in the interior of triangle ABC. Suppose that the lines
AP , BP , and CP intersect the circumcircle of ABC again at A′, B ′, and C ′, respectively.
Prove

S(BPC)

AP
+ S(APC)

BP
+ S(APB)

CP
≥ S(BPC)

A′P
+ S(APC)

B ′P
+ S(APB)

C ′P
,

where S(XYZ) denotes the area of triangle XYZ.

12131. Proposed by Michael Maltenfort, Northwestern University, Evanston, IL. Let m and
n be positive integers with n ≥ 2. Suppose that U is an open subset of Rm and f : U → R

n

is continuously differentiable. Let K be the set of all x ∈ U such that the derivative Df (x),
as a linear transformation, has rank less than n. Prove that if f (K) is countable, U \ K 	= ∅,
and f (U) is closed, then f (U) = R

n.

SOLUTIONS

Cycle of Powers

11665 [2012, 669]. Proposed by Raitis Ozols, student, University of Latvia, Riga, Latvia.
Let a = (a1, . . . , an), where n ≥ 2 and each aj is a positive real number. Let S(a) =
a

a2
1 + · · · + a

an
n−1 + a

a1
n .

(a) Prove that S(a) > 1.
(b) Prove that for all ε > 0 and n ≥ 2 there exists a of length n with S(a) < 1 + ε.

Solution by Traian Viteam, Punta Arenas, Chile. First, we prove the result for n = 2. We
show that if a, b > 0, then ab + ba > 1. If one of a and b is at least 1, this is clear, so we
henceforth assume 0 < a, b < 1. From Bernoulli’s inequality, we have

a1−b = (1 + (a − 1))1−b < 1 + (1 − b)(a − 1) = a + b − ab.

Hence ab > a
a+b−ab

. Similarly, ba > b
a+b−ab

, so

ab + ba >
a

a + b − ab
+ b

a + b − ab
= a + b

a + b − ab
> 1.

For n ≥ 3, we may assume by cyclic symmetry that a1 = max{a1, . . . , an}. Again,
when a1 ≥ 1 we are obviously done, so we may assume that ai is in (0, 1) for all i. We
then have

S(a) > a
a2
1 + a

a3
2 ≥ a

a2
1 + a

a1
2 > 1,

where the final step is the case n = 2.
For part (b), let ε be an arbitrary positive constant. Choose an = 1. We define

an−1, . . . , a1 inductively. Assume that we have defined positive reals an−k, . . . , an. Since
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limx→0 xan−k = 0, we can choose an−k−1 small enough so a
an−k

n−k−1 < ε/(n − 1). Once we
have defined a1, . . . , an in this way,

S(a) < (n − 1)
ε

n − 1
+ 1 = 1 + ε.

Editorial comment. The editors regret the delay in the appearance of this solution. The
case n = 2 of this inequality, from which the general case easily follows as shown above,
has appeared before. For example, it is inequality 3.6.38 on page 281 in D. S. Mitrinović,
(1970), Analytic Inequalities, Berlin: Springer-Verlag.

Also solved by K. F. Andersen (Canada), G. Apostolopoulos (Greece), R. Boukharfane (France), N. Caro
(Brazil) and O. López (Colombia), H. Chen, J. Chun (South Korea), P. P. Dályay (Hungary), V. De Angelis,
A. Ercan (Turkey), D. Fleischman, A. Habil (Syria), E. A. Herman, Y. J. Ionin, H. Katsuura & E. Schmeichel,
O. Kouba (Syria), J. Li, M. Omarjee (France), P. Perfetti (Italy), M. A. Prasad (India), R. Stong, M. Vowe
(Switzerland), GCHQ Problem Solving Group (U. K.), and the proposer.

Tight Pavings by Integer Rectangles

12005 [2018, 755]. Proposed by Donald E. Knuth, Stanford, CA. A tight m-by-n paving is
a decomposition of an m-by-n rectangle into m + n − 1 rectangular tiles with integer sides
such that each of the m − 1 horizontal lines and n − 1 vertical lines within the rectangle is
part of the boundary of at least one tile. For example, one of the 1071 tight 3-by-5 pavings
is pictured here:

Let am,n denote the number of tight m-by-n pavings.
(a) Determine a3,n as a function of n.
(b) Show for m ≥ 3 that limn→∞ am,n/mn exists, and compute its value.

Composite solution by Richard Stong, Center for Communications Research, San Diego,
CA, Roberto Tauraso, Università di Roma “Tor Vergata,” Rome, Italy, and O. P. Lossers,
Eindhoven University of Technology, Eindhoven, The Netherlands. The answers are
(a) a3,n = 27

4 3n − 20 · 2n + n2 + 13
2 n + 53

4 and (b) limn→∞ am,n/m
n = m2 m−1/(m!)2.

A paving is any decomposition as described in the problem statement, except for drop-
ping the requirement that the number of tiles is m + n − 1. We show that the minimum
number of tiles in a paving is m + n − 1. The pavings achieving this minimum number
of tiles are called tight. For convenience, we use gridline to mean one of the m + n − 2
horizontal or vertical lines that cross the rectangle internally at a positive integer distance
from the sides. An edge is a side of any rectangle in the paving. A segment is a maximal
connected union of edges along a single gridline. The condition for a paving is that every
gridline contains at least one edge.

Lemma. In a tight paving, no vertical segment crosses a horizontal segment (at an internal
point of both), and the edges on any gridline form a single segment.

Proof. In any paving, say that a tile T witnesses a horizontal gridline h if it is the leftmost
tile whose top is on h and witnesses a vertical gridline v if it is the highest tile whose left
side is on v. Note that (1) the tile U at the upper left corner witnesses no gridline, (2) each
gridline is witnessed by exactly one tile, and (3) no tile witnesses more than one gridline
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(the segments at the top and left of a tile T witnessing horizontal and vertical gridlines
would not continue leftward or upward, preventing the tiling from being completed).

These three observations imply that every paving has at least m + n − 1 tiles, so tight
pavings are those with the fewest tiles, and every tile other than U in such a paving wit-
nesses exactly one gridline. If two segments cross, then the crossing point is a corner of
four tiles, and the one on the lower right of these four would witness no gridline.

For the second statement, suppose by symmetry that a horizontal gridline h contains
more than one segment. Let T1 be the tile witnessing h, and let edge E be a leftmost edge
on the next segment along h. Since the segment containing E does not extend leftward,
the portion of h to the left of E is internal to some tile T2. Now the left endpoint of E is
the upper left corner of a tile T3 that does not witness the gridline for its top or left edge,
contradicting that every tile other than U witnesses a gridline. �
(a) An m-by-n rectangle has m − 1 horizontal gridlines. By the lemma, every tight paving
contains exactly one segment on each horizontal gridline. Let Hj denote the interval
obtained by projecting the segment from the gridline at height j onto the horizontal axis.

For m = 3, consider first the case where H1 = H2 (as in Figure 1, where x2 = 3). Since
neither horizontal segment extends and each gridline contains a single segment, there are
no horizontal edges not on these segments, so all the tiles to the left and right of these
horizontal segments have width 1 and height 3.

Figure 1. Horizontal segments of equal extent.

Now consider the vertical segments between the endpoints of the two horizontal seg-
ments. Since segments cannot cross, each of these x2 − 1 vertical gridlines contains a seg-
ment of length one in one of three possible places, and all such choices yield pavings. Each
insertion of a vertical segment increases the number of tiles by 1, so there are 3 + x2 − 1
tiles along the horizontal segments and n − x2 tiles outside them, totaling n + 2.

Letting N be the number of tight pavings in this case, we have N = ∑
x∈P1

3x2−1, where
P1 is the set of nonnegative integer triples (x1, x2, x3) with sum n such that x2 ≥ 1. Using
[zn]f (z) to mean the coefficient of zn in f (z), we have

N = [zn]
∑
x1≥0

zx1
∑
x2≥1

1

3
(3z)x2

∑
x3≥0

zx3 = [zn]
1

1 − z

z

1 − 3z

1

1 − z
.

There are four other cases, illustrated in Figure 2. The intervals H1 and H2 may have
no positive overlap, have overlap without containment, exhibit strict containment at both
ends, or be equal at one end. Due to reflections, the first three of these cases may occur in
two ways, the last in four ways.

These cases lead, in the same way as above, to four generating functions. For each case,
the contribution to a3,n will be a sum over nonnegative choices of the variables summing to
n, where variables giving lengths of portions of the horizontal segments must be positive.
For a variable x measuring a portion covered by both horizontal segments, the factor in the
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Figure 2. The remaining four cases.

number of choices is 3x−1; for a portion covered by only one of the horizontal segments, it
is 2x−1 (again because no two segments cross). We obtain the following contributions.

Case #Tilings Generating Function

0 (Figure 1)
∑

3x2−1 z

(1−z)2(1−3z)

1 (Figure 2) 2
∑

2x2−12x4−1 2z2

(1−z)3(1−2z)2

2 (Figure 2) 2
∑

2x2−13x3−12x4−1 2z3

(1−z)2(1−2z)2(1−3z)

3 (Figure 2) 2
∑

2x2−13x3−12x4−1 2z3

(1−z)2(1−2z)2(1−3z)

4 (Figure 2) 4
∑

2x2−13x3−1 4z2

(1−z)2(1−2z)(1−3z)

The sum of the five rational functions is z(1+3z)

(1−z)3(1−2z)(1−3z)
, which has partial fraction

expansion

27/4

1 − 3z
− 20

1 − 2z
+ 2

(1 − z)3
+ 7/2

(1 − z)2
+ 31/4

1 − z
.

Thus

a3,n = 27

4
3n − 20 · 2n + 2

(
n + 2

2

)
+ 7

2
(n + 1) + 31

4

= 27

4
3n − 20 · 2n + n2 + 13

2
n + 53

4
.

(b) Let λm = limn→∞ am,n/mn. Asymptotically, we can restrict to tight pavings where
H1, . . . , Hm−1 have a common subinterval of positive length. The reason is that the number
of tight pavings yielding no such overlap is less than n2(m−1)(m − 1)n−1 (and the ratio of
this to mn tends to 0 as n → ∞). To see this, note first that each of H1, . . . , Hm−1 can
be specified in fewer than n2 ways. For the vertical segments, since each gridline has one
segment and they don’t cross, the lack of a common horizontal overlap implies that there
are at most m − 1 ways to place each vertical segment (extending part (a)). Let âm,n be
the number of tight pavings of the m-by-n rectangle where H1, . . . , Hm−1 have a common
overlap.

For any paving counted by âm,n, we partition the interval [0, n] into three subintervals
of lengths k, d, and l, where d is the positive length of

⋂
Hi , k is the length of the part of
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Figure 3. Part of a tight paving with (m, k) = (7, 5) and multiset [13, 32, 51].

the gridlines to its left, and l is the remaining length to the right. Some Hi starts at k, and
some Hi ends at k + d.

The left ends of H1, . . . , Hm−1 form a multiset of size m − 1 from {0, . . . , k}, using k

at least once. With Hi = [ai, bi], let α1, . . . , αr in increasing order be the values occurring
as some ai , having multiplicities e1, . . . , er . Write the multiset as [αe1

1 , . . . , αer
r ].

The key restriction on the list a1, . . . , am−1 is that if ai = aj = β with i < j , then
at ≥ β for all t with i < t < j . Since Hi and Hj do not extend leftward of ai , the
points (β, i) and (β, j) lie on vertical edges. Since each vertical gridline contains only
one segment, (β, t) is internal to the vertical segment at horizontal position β. Since
bt ≥ k + d > β and segments cannot cross, at ≥ β.

With this restriction, we count the ways to form the list a1, . . . , am−1 using the multiset
[αe1

1 , . . . , αer
r ]. The restriction implies that the copies of αj in a1, . . . , am−1 occupy ej

consecutive blank positions among the m − 1 −∑r
i=j+1 ei blank positions left by placing

the copies of all αi with i > j . Since ej copies of αj must be placed, there are m −∑r
i=j ei

possible places to start the copies of αj , regardless of how the larger values were placed.
Since

∑r
i=1 ei = m − 1, the number of configurations of the left endpoints corresponding

to the given multiset is
∏r−1

j=1

(
1 +∑j

i=1 ei

)
.

Between the horizontal positions αj and αj+1 are αj+1 − αj − 1 vertical gridlines. No
horizontal segments end at these gridlines. Hence the segment on each such vertical grid-
line is a single edge joining two of the horizontal segments (including the top and bottom
edges) that start at position αj or earlier. That gives 1 +∑j

i=1 ei choices for the vertical
segment.

After forming the list a1, . . . , am−1 and placing the vertical segments, we have∏r−1
j=1

(
1 +∑j

i=1 ei

)αj+1−αj

ways to form the left part of the paving from the given mul-

tiset. Let sm,k denote the sum of these quantities over all multisets of size m − 1 chosen
from {0, . . . , k}.

We can write a multiset [αe1
1 , . . . , αer

r ] as [0f0 , . . . , kfk ] by including the multiplicities
of the unused elements, which equal 0. We then have

r−1∏
j=1

(
1 +

j∑
i=1

ei

)αj+1−αj

=
k−1∏
l=0

(
1 +

l∑
i=0

fi

)
=

k−1∏
l=0

cl,
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where cl = 1 +∑l
i=0 fi . The list c0, . . . , ck−1 is a weakly increasing integer list with val-

ues between 1 and m − 1. Over all choices of the multiset [αe1
1 , . . . , αer

r ] from {0, . . . , k},
we obtain all such lists. That is, sm,k = ∑

c∈Lm,k

∏k−1
l=0 cl , where Lm,k is the set of all k-

element nonnegative integer lists c such that 1 ≤ c0 ≤ · · · ≤ ck−1 ≤ m − 1.
Within the central overlap portion, each vertical gridline must have a single edge of

length 1; there are md−1 ways to place these. The right portion of the paving is constructed
symmetrically to the left portion, over an interval of length n − d − k. Thus

âm,n =
n∑

d=1

n−d∑
k=0

sm,ksm,n−d−km
d−1.

Replacing d with n − k − l, we write

λm = lim
n→∞

âm,n

mn
= lim

n→∞
1

m

∑
k+l<n

sm,k

mk

sm,l

ml
.

The key now is to replace the sum over a triangle of values with a sum over a square of
values, separating the sums over k and l. We have

�(n−1)/2∑
k=0

�(n−1)/2∑
l=0

sm,k

mk

sm,l

ml
≤
∑

k+l<n

sm,k

mk

sm,l

ml
≤

n−1∑
k=0

n−1∑
l=0

sm,k

mk

sm,l

ml
.

As n → ∞, the upper and lower bounds are the same; hence the limit of the middle expres-
sion must be the same as the limit of the outer expressions.

Thus λm = 1
m

(∑∞
k=0 sm,k/m

k
)2

. To turn this into the desired limit m2m−1/(m!)2, it suf-
fices to prove

∑∞
k=0 sm,k/m

k = mm−1/(m − 1)!. To do this, we compute

∞∑
k=0

sm,k

mk
=

∞∑
k=0

∑
c∈Lm,k

k−1∏
i=0

ci

m
=

m−1∏
q=0

∞∑
t=0

( q

m

)t =
m−1∏
q=0

1

1 − q/m
= mm−1

(m − 1)!
.

To justify the second equality here, note that the double sum
∑∞

k=0

∑
c∈Lm,k

encounters
every multiset of values chosen from {0, . . . , m − 1}. Over the full sum, any multiplicity
of a given value q is grouped with all possible multiplicities of other values. Hence we
can regroup the terms by the values, leading to the product of infinite sums for each of the
values.

Editorial comment. The sequence in part (a) appears as sequence A285361 at oeis.org.

Also solved by H. K. Pillai (India) and M. A. Prasad (India; part (a) only).

A Hyperbolic Limit of Trigonometric Matrices

12014 [2018, 81]. Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-
Napoca, Romania. Let a, b, c, and d be real numbers with bc > 0. Calculate

lim
n→∞

[
cos(a/n) sin(b/n)

sin(c/n) cos(d/n)

]n

.

Solution by Tamas Wiandt, Rochester Institute of Technology, Rochester, NY. The limit is[
cosh

√
bc√

c/b sinh
√

bc

√
b/c sinh

√
bc

cosh
√

bc

]
.
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Letting

An =
[

cos(a/n) − 1

sin(c/n)

sin(b/n)

cos(d/n) − 1

]
,

we have [
cos(a/n)

sin(c/n)

sin(b/n)

cos(d/n)

]
= I + An,

where I is the 2 × 2 identity matrix. When n is large enough, ‖An‖ < 1 and

log(I + An) = An − 1

2
A2

n + 1

3
A3

n − 1

4
A4

n + · · · .

Since

An =
[

O(1/n2) b/n + O(1/n3)

c/n + O(1/n3) O(1/n2)

]
,

we have log(I + An) = An + O(1/n2) and n log(I + An) = nAn + O(1/n). Since

lim
n→∞ n log(I + An) = lim

n→∞ nAn =
[

0 b

c 0

]
,

we obtain

lim
n→∞

[
cos(a/n) sin(b/n)

sin(c/n) cos(d/n)

]n

= lim
n→∞ exp(n log(I + An)) = exp

([
0 b

c 0

])
.

If bc > 0, then the matrix
[

0
c

b

0

]
has distinct eigenvalues

√
bc and −√

bc, and

[
0 b

c 0

]
=
[ √

b
√

b√
c −√

c

] [ √
bc 0
0 −√

bc

][ 1
2
√

b

1
2
√

c

1
2
√

b
− 1

2
√

c

]
,

where b, c > 0. Thus

exp

([
0 b

c 0

])
=
[ √

b
√

b√
c −√

c

][
e
√

bc 0
0 e−√

bc

][ 1
2
√

b

1
2
√

c

1
2
√

b
− 1

2
√

c

]

=
[

cosh
√

bc
√

b/c sinh
√

bc√
c/b sinh

√
bc cosh

√
bc

]
.

The case where b, c < 0 is similar.

Also solved by K. F. Andersen (Canada), A. Berkane (Algeria), R. Chapman (U. K.), H. Chen, G. Fera
(Italy), D. Fleischman, C. Georghiou (Greece), J. Grivaux (France), A. Goel, E. A. Herman, Y. Hu (China),
O. Kouba (Syria), J. H. Lindsey II, O. P. Lossers (Netherlands), A. Minasyan (Russia), R. Nandan, M. Omarjee,
F. Perdomo & Á. Plaza (Spain), K. Schilling, J. Singh (India), J. C. Smith, A. Stadler (Switzerland), R. Stong,
R. Tauraso (Italy), N. Thornber, E. I. Verriest, Z. Vörös (Hungary), A. Wentworth, GCHQ Problem Solving
Group (U. K.), Missouri State University Problem Solving Group, and the proposer.

A Symmetric Sum

12016 [2018, 81]. Proposed by Hideyuki Ohtsuka, Saitama, Japan, and Roberto Tauraso,
Università di Roma “Tor Vergata,” Rome, Italy. For nonnegative integers m, n, r , and s,
prove

s∑
k=0

(
m + r

n − k

)(
r + k

k

)(
s

k

)
=

r∑
k=0

(
m + s

n − k

)(
s + k

k

)(
r

k

)
.
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Solution by Nicole Grivaux, Paris, France. Let A(r, s) be the left side of the equation to
be proved. Throughout, we use the convention that

(
a

b

) = 0 whenever b > a ≥ 0. By the
Vandermonde identity and symmetry,(

r + k

k

)
=

r∑
i=0

(
r

i

)(
k

k − i

)
=

r∑
i=0

(
r

i

)(
k

i

)
.

Hence

A(r, s) =
r∑

i=0

(
r

i

) s∑
k=0

(
m + r

n − k

)(
s

k

)(
k

i

)

=
r∑

i=0

(
r

i

) s∑
k=0

(
m + r

n − k

)(
s

i

)(
s − i

k − i

)

=
min(r,s)∑

i=0

(
r

i

)(
s

i

) s∑
k=0

(
m + r

n − k

)(
s − i

k − i

)

=
min(r,s)∑

i=0

(
r

i

)(
s

i

)(
m + r + s − i

n − i

)
.

The second equality follows from
(
s

k

)(
k

i

) = (
s

i

)(
s−i

k−i

)
, while the fourth is another application

of the Vandermonde identity. Since the final form is symmetric in r and s, we conclude
A(r, s) = A(s, r), which is the desired equality.

Also solved by U. Abel (Germany), H. Almusawa & N. Alobaidan & R. Jacobs & D. Nuraliyev & J. Shive
& M. Apagodu, T. Amdeberhan & V. H. Moll, R. Chapman (U. K.), S. B. Ekhad, R. Evans, G. Fera (Italy),
D. Fleischman, O. Kouba (Syria), P. Lalonde (Canada), O. P. Lossers (Netherlands), J. C. Smith, A. Stadler
(Switzerland), R. Stong, M. Wildon (U. K.), GCHQ Problem Solving Group (U. K.), and the proposers.

Euler’s Totient is Sparse

12021 [2018, 179]. Proposed by Omar Sonebi, Lycée Technique, Settat, Morocco. Let φ be
the Euler totient function. Given a ∈ Z

+ and b ∈ Z
+, show that there exists n ∈ Z

+ such
that an + b is not in the range of φ.

Solution by Li Zhou, Polk State College, Winter Haven, FL. Let d = gcd(a, b), with a = dr

and b = ds. Set t = r
∏d

i=1(is + 1); note that t is relatively prime to s. By Dirichlet’s
theorem, there is a prime p of the form tm + s for some m ∈ Z

+. Let n = tm/r . We claim
that an + b, which equals dp, is not in the range of φ. If dp = φ(N) for some N ∈ Z

+

having prime factorization
∏k

j=1 p
ej

j , then dp = ∏k
j=1 p

ej −1
j (pj − 1). Since p − 1 > d,

we conclude that p is a factor of pi − 1 for some i. Now pi = qp + 1 for some q with
1 ≤ q ≤ d. Since qp + 1 = q(tm + s) + 1 = (qs + 1) + qmr

∏d
i=1(is + 1), this requires

qp + 1 to have qs + 1 as a proper factor, so qp + 1 cannot be prime. This contradiction
completes the proof of the claim.

Editorial comment. Souvik Dey and Celia Schacht noted that the claim immediately fol-
lows from the more general result of S. S. Pillai (1929), On some functions connected with
φ(n), Bull. Amer. Math. Soc. 35: 832–836, which implies that if N(n) is the number of
positive integers up to n that are in the range of φ, then limn→∞ N(n)/n = 0.

Also solved by S. Chandrasekhar, A. Cheraghi (Canada), S. Dey (India), G. Fera (Italy), D. Fleischman,
K. Gatesman, Y. J. Ionin, J. Kim (South Korea), O. P. Lossers (Netherlands), M. Omarjee (France), M. Reid,
C. Schacht, A. Stadler (Switzerland), R. Stong, R. Tauraso (Italy), AN-anduud Problem Solving Group
(Mongolia), GCHQ Problems Solving Group (U. K.), Missouri State University Problem Solving Group, and
the proposer.
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