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PROBLEMS AND SOLUTIONS

Edited by Gerald A. Edgar, Daniel H. Ullman, Douglas B. West
with the collaboration of Paul Bracken, Ezra A. Brown, Zachary Franco, Christian Friesen,
László Lipták, Rick Luttmann, Frank B. Miles, Lenhard Ng, Kenneth Stolarsky, Richard
Stong, Daniel Velleman, Stan Wagon, Elizabeth Wilmer, Fuzhen Zhang, and Li Zhou.

Proposed problems should be submitted online at
americanmathematicalmonthly.submittable.com/submit.

Proposed solutions to the problems below should be submitted by April 30, 2020, via
the same link. More detailed instructions are available online. Proposed problems
must not be under consideration concurrently at any other journal nor be posted to
the internet before the deadline date for solutions. An asterisk (*) after the number
of a problem or a part of a problem indicates that no solution is currently available.

PROBLEMS

12146. Proposed by Gregory Galperin, Eastern Illinois University, Charleston, IL, and
Yury J. Ionin, Central Michigan University, Mount Pleasant, MI. Let n be an integer greater
than 1, and let [n] denote {1, . . . , n} as usual. Let π1, π2, . . . , πn! be a list of the n! permu-
tations of [n], ordered lexicographically with respect to the word πk(1)πk(2) · · ·πk(n). For
example, with n = 3, the 6 words in order are 123, 132, 213, 231, 312, and 321.
(a) For 1 ≤ k < n!, let ψk be the permutation of [n] defined by ψk(i) = j if and only if
πk(i) = πk+1(j). What is the cardinality of {ψk : 1 ≤ k < n!}?
(b) For 1 ≤ k < n!, let ϕk be the permutation of [n] defined by ϕk(πk(j)) = πk+1(j). What
is the cardinality of {ϕk : 1 ≤ k < n!}?
12147. Proposed by Luis González, Houston, TX, and Tran Quang Hung, Hanoi National
University, Hanoi, Vietnam. Let ABCD be a quadrilateral that is not a parallelogram. The
Newton line of ABCD is the line that connects the midpoints of the diagonals AC and BD.
Let X be the intersection of the perpendicular bisectors of AB and CD, and let Y be the
intersection of the perpendicular bisectors of BC and DA. Prove that XY is perpendicular
to the Newton line of ABCD.

12148. Proposed by Tibor Beke, University of Massachusetts, Lowell, MA. Let p be a prime
number, and let f be a symmetric polynomial in p − 1 variables with integer coefficients.
Suppose that f is homogeneous of degree d and that p − 1 does not divide d. Prove that
p divides f (1, 2, . . . , p − 1).

12149. Proposed by Mohammadhossein Mehrabi, Sala, Sweden. Let � be the gamma func-
tion, defined by �(x) = ∫ ∞

0 e−t t x−1 dt . Prove

xxyy �

(
x + y

2

)2

≤
(
x + y

2

)2

�(x)�(y)

for all positive real numbers x and y.

12150. Proposed by Péter Kórus, University of Szeged, Szeged, Hungary. Let X0, . . . , Xn
be independent random variables, each distributed uniformly on [0, 1]. Calculate the
expected value of min1≤k≤n |X0 −Xk|.

doi.org/10.1080/00029890.2019.1664219

946 c© THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 126

http://dx.doi.org/10.1080/00029890.2019.1664219


12151. Proposed by Leonard Giugiuc and Cezar Alexandru Trancanau, Drobeta Turnu
Severin, Romania, and Michael Rozenberg, Tel Aviv, Israel. Let A, B, C, and M be points
in the plane with A, B, and C distinct. Let A′, B ′, and C ′ be the reflections through M of
A, B, and C, respectively. Determine the minimum value of AB′/AB + BC′/BC + CA′/CA
under the constraint that
(a) A, B, C, and M are collinear.
(b) A, B, and C are not collinear.

12152. Proposed by George Stoica, Saint John, NB, Canada. Let f be a twice differentiable
real-valued function on [0,∞) such that f (0) = 1, f ′(0) = 0, and f (x)f ′′(x) = 1 for all

positive x. Find limx→∞ f (x)/(x
√

ln x).

SOLUTIONS

An Integral Involving Fractional Parts

12031 [2018, 277]. Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-
Napoca, Romania. (a) Prove

∫ 1

0

∫ 1

0

{
x

1 − xy

}
dx dy = 1 − γ,

where {a} denotes the fractional part of a, and γ is Euler’s constant.
(b) Let k be a nonnegative integer. Prove

∫ 1

0

∫ 1

0

{
x

1 − xy

}k
dx dy =

∫ 1

0

{
1

x

}k
dx.

Solution by Eugene A. Herman, Grinnell College, Grinnell, IA. We begin with (b). More
generally, we prove

∫ 1

0

∫ 1

0
f

({
x

1 − xy

})
dx dy =

∫ 1

0
f

({
1

x

})
dx

for any bounded measurable function f on [0, 1]. To prove this, we first change variables
to u = 1/x − y and v = y. Thus x = (u + v)−1 and y = v, and so we have dx dy =
(u + v)−2 dv du. Since u + v = 1/x ≥ 1, the new domain of integration consists of the
two regions {(u, v) : 1 ≤ u < ∞, 0 ≤ v ≤ 1} and {(u, v) : 0 ≤ u ≤ 1, 1 − u ≤ v ≤ 1}.
Therefore∫ 1

0

∫ 1

0
f

({
x

1 − xy

})
dx dy

=
∫ ∞

1

∫ 1

0
f

({
1

u

})
1

(u+ v)2
dv du+

∫ 1

0

∫ 1

1−u
f

({
1

u

})
1

(u+ v)2
dv du

=
∫ ∞

1
f

({
1

u

})
1

u(u+ 1)
du+

∫ 1

0
f

({
1

u

})(
1 − 1

u+ 1

)
du.

Since {1/u} = 1/u when u > 1, it remains to show
∫ 1

0
f

({
1

u

})
1

u+ 1
du =

∫ ∞

1
f

(
1

u

)
1

u(u+ 1)
du.
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To prove this, we substitute w = 1/u in the integral on the left side, and then, later,
u = 1/(w − j):

∫ 1

0
f

({
1

u

})
1

u+ 1
du =

∫ ∞

1
f ({w}) 1

w(w + 1)
dw

=
∞∑
j=1

∫ j+1

j

f (w − j)
1

w(w + 1)
dv

=
∞∑
j=1

∫ ∞

1
f

(
1

u

)
du

(1 + ju)(1 + (j + 1)u)

=
∫ ∞

1
f

(
1

u

)
1

u

∞∑
j=1

(
1

1 + ju
− 1

1 + (j + 1)u

)
du

=
∫ ∞

1
f

(
1

u

)
1

u(u+ 1)
du.

(a) By (b) and the asymptotic formula Hn = log n+ γ +O(1/n) for the harmonic num-
bers Hn,

∫ 1

0

∫ 1

0

{
x

1 − xy

}
dx dy =

∫ 1

0

{
1

x

}
dx =

∞∑
j=1

∫ 1/j

1/(j+1)

(
1

x
− j

)
dx

= lim
n→∞

n∑
j=1

(
− log j + log(j + 1)− 1

j + 1

)

= lim
n→∞ (log(n+ 1)− (Hn+1 − 1))

= lim
n→∞ (log(n+ 1)− (log(n+ 1)+ γ − 1)) = 1 − γ.

Editorial comment. The proposer and the GCHQ Problem Solving Group noted that when
k = 2, the value of the integral in (b) is log(2π)− γ − 1.

Also solved by K. F. Andersen (Canada), A. Berkane (Algeria), H. Chen, G. Fera, K. Gatesman, M. L. Glasser,
J. A. Grzesik, O. Kouba (Syria), J. H. Lindsey II, Y. Mikayelyan (Armenia), T. Amdeberhan & V. H. Moll,
P. Perfetti (Italy), N. C. Singer, J. C. Smith, A. Stadler (Switzerland), R. Stong, R. Tauraso (Italy), L. Zhou,
GCHQ Problem Solving Group (UK), and the proposer.

An Oscillating Binomial Sum

12032 [2018, 277]. Proposed by David Galante (student) and Ángel Plaza, University of
Las Palmas de Gran Canaria, Las Palmas, Spain. For a positive integer n, compute

n∑
p=0

n∑
k=p
(−1)k−p

(
k

2p

)(
n

k

)
2n−k.

Solution by Pierre Lalonde, Kingsey Falls, QC, Canada. The value is 2n/2 cos(nπ/4). Inter-
changing the order of summation converts the sum to

n∑
k=0

(−1)k
(
n

k

)
2n−k

k∑
p=0

(−1)p
(
k

2p

)
.
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Since (1 ± i)k = ∑k
p=0(±1)p

(
k

p

)
ip, where i = √−1, cancellation in the binomial expan-

sions yields

1

2

(
(1 + i)k + (1 − i)k

) =
k∑

p=0

i2p
(
k

2p

)
=

k∑
p=0

(−1)p
(
k

2p

)
,

so the sum equals

1

2

n∑
k=0

(−1)k
(
n

k

)
2n−k

(
(1 + i)k + (1 − i)k

)
.

This sum contains the binomial expansions of (2 − (1 + i))n and (2 − (1 − i))n, so the
value is 1

2 ((1 − i)n + (1 + i)n). Finally, we compute

(1 + i)n + (1 − i)n

2
=

(√
2eiπ/4

)n +
(√

2e−iπ/4
)n

2

= 2n/2
enπi/4 + e−nπi/4

2
= 2n/2 cos(nπ/4).

Also solved by U. Abel (Germany), T. Amdeberhan & V. H. Moll, K. F. Andersen (Canada), M. A. Carlton,
R. Chapman (UK), P. P. Dályay (Hungary), G. Fera (Italy), D. Fleischman, K. Gatesman, M. Jones, O. Kouba
(Syria), K. T. L. Koo (China), O. P. Lossers (Netherlands), B. Lu, M. Omarjee (France), L. J. Peterson, R. Pratt,
N. C. Singer, J. C. Smith, A. Stadler (Switzerland), R. Stong, R. Tauraso (Italy), M. Wildon, L. Zhou, GCHQ
Problem Solving Group (UK), and the proposers.

A Quadrilateral Inequality

12033 [2018, 277]. Proposed by Dao Thanh Oai, Thai Binh, Vietnam, and Leonard
Giugiuc, Drobeta Turnu Severin, Romania. Let ABCD be a convex quadrilateral with area
S. Prove

AB2 + AC2 + AD2 + BC2 + BD2 + CD2 ≥ 8S + AB · CD + BC · AD − AC · BD.

Solution by Omran Kouba, Higher Institute for Applied Sciences and Technology, Damas-
cus, Syria. Ptolemy’s inequality is AB · CD + BC · AD ≥ AC · BD. The AM-GM inequality
then gives

2 AC · BD ≤ 2(AB · CD + BC · AD) ≤ AB2 + CD2 + BC2 + AD2 (1)

and

2 AC · BD ≤ AC2 + BD2. (2)

Also,

0 ≤ (AB − CD)2 + (BC − AD)2 + (AC − BD)2. (3)

Adding (1), (2), and (3) and dividing through by 2 yields

2 AC · BD ≤ AB2 + AC2 + AD2 + BC2+BD2 + CD2

− AB · CD − BC · AD − AC · BD,

which is equivalent to

AB · CD + BC · AD − AC · BD + 4AC · BD

≤ AB2 + AC2 + AD2 + BC2 + BD2 + CD2. (4)
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The final step is to note that if θ is the angle between the diagonals AC and BD, then

S = 1

2
AC · BD · sin θ ≤ 1

2
AC · BD. (5)

The desired result follows from (4) and (5).
Equality holds when θ in (5) is a right angle and the right side of (3) is 0. These happen

only when the quadrilateral is a square.

Editorial comment. Solvers Richard Stong and Li Zhou noted the stronger inequality

AB2+AC2+AD2+BC2+BD2+CD2 ≥ 8S + 2
(
AB · CD + BC · AD − AC · BD

)

Also solved by E.. Bojaxhiu & E. Hysnelaj, P. P. Dályay (Hungary), D. Fleischman, K. Gatesman, H. Hyun
(South Korea), K. T. L. Koo (China), V. Mikayelyan (Armenia), Davis Problem Solving Group, J. C. Smith,
A. Stadler (Switzerland), R. Stong, B. Karaivanov (USA) & T. S. Vassilev (Canada), E. A. Weinstein,
M. R. Yegan (Iran), L. Zhou, Davis Problem Solving Group, GCHQ Problem Solving Group (UK), and the
proposer.

Multiples Without Large Digits

12034 [2018, 370]. Proposed by Gregory Galperin, Eastern Illinois University, Charleston,
IL, and Yury J. Ionin, Central Michigan University, Mount Pleasant, MI. Let N be any
natural number that is not a multiple of 10. Prove that there is a multiple of N each of
whose digits in base 10 is 1, 2, 3, 4, or 5.

Solution by Michael Reid, University of Central Florida, Orlando, FL. Let M be a natural
number greater than 1, and let L = M/q, where q is the smallest prime divisor of M . As
usual, let [n] = {1, . . . , n}. We prove the more general statement that every natural number
N that is not a multiple of M has a multiple whose base M expansion has entries only in
[L]. (In the given problem, (M, q, L) = (10, 2, 5).)

Lemma 1. If gcd(N,M) = 1, then N divides
∑t

i=0M
i for some nonnegative t .

Proof. With as = ∑s
i=0M

i , by the pigeonhole principle some two numbers among
a0, . . . , aN are congruent modulo N . Since N divides their difference, which has the
form Mjat , we see that N also divides at . �
Lemma 2. If A is a divisor of M such that gcd(A,M/A) = 1, then the Ak numbers whose
base-M expansions consist of k entries from [A] are distinct modulo Ak . In particular, one
of them is divisible by Ak .

Proof. We use induction on k; the claim is trivial for k = 1. For k ≥ 1, suppose that∑k
i=0 aiM

i and
∑k

i=0 biM
i are congruent modulo Ak+1. Since A divides M , the num-

bers akMk and bkMk are divisible by Ak . Hence
∑k−1

i=0 a
iMi and

∑k−1
i=0 biMi are congru-

ent modulo Ak . By the induction hypothesis, ai = bi for 0 ≤ i ≤ k − 1. Subtracting the
terms for i < k from the assumed congruence leaves akMk ≡ bkM

k modAk+1. Thus Ak+1

divides (ak − bk)M
k . SinceAk dividesMk , andM/A is relatively prime toA, we conclude

that A divides ak − bk . Since ak, bk ∈ [A], we have ak = bk . �
Now letN be a positive integer not a multiple ofM . For some prime p, the largest power

pb dividing N is less than the largest power pc dividing M . Write N as pbRS, where S is
the largest divisor ofN relatively prime toM . Thus every prime dividing R dividesM , and
p � R.

Let A = M/pc. Thus R divides some power of A, say Ak . Also A and M/A are rela-
tively prime. By Lemma 2, R divides some number B whose base-M expansion consists
of k entries from [A].
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Since S is relatively prime to M and thus also to Mk , Lemma 1 implies that S divides a
number C of the form

∑t
i=0(M

k)i . Now BC is a multiple of RS, and the base-M expansion
of BC consists of the expansion of B repeated t + 1 times. Hence all the entries of this
expansion lie in [A]. Finally, pbBC is a multiple of pbRS, which equals N . The entries in
the base-M expansion of pbBC are in {pb, 2pb, . . . , Apb}, which is contained in [L] since
Apb ≤ M/p ≤ M/q = L.

Editorial comment. The restriction of entries to [L] is in some sense sharp. If s is not a
multiple of q, then sL is not divisible by M , and the units position of every multiple of sL
is divisible by L and hence not in [L− 1].

On the other hand, when M is not squarefree, the set [L] can be reduced to a proper
subset. Suppose that M has prime factorization

∏r
i=1 p

ei
i , and let Ai = M/p

ei
i for i ∈ [r].

The proof shows that every N not divisible by M has a multiple whose base-M expansion
has all entries in the set

⋃r
i=1{pei−1

i , 2pei−1
i , . . . , Aip

ei−1
i }, which is a proper subset of [L]

when M has a repeated prime factor.
For the original problem, several readers employed the Euler phi-function. In particular,

when gcd(n, q − 1) = 1, the summed geometric series
∑φ(n)−1

i=0 qi (a q-analogue of φ(n))
is divisible by n, by Euler’s theorem. For example, when q = 10 and n = 77, we have
φ(77) = 60, and hence 77 divides

∑59
i=0 10i .

Some substantial papers have been written about the digit distribution of multiples of
integers. An example is Schmidt, W. M. (1983), The joint distribution of the digits of cer-
tain integer s-tuples, in Erdős, P., et al., eds., Studies in Pure Mathematics: To the Memory
of Paul Turán, Basel: Birkhäuser, pp. 605–622.

Also solved by R. Chapman (UK), P. P. Dályay (Hungary), D. Fleischman, K. Gatesman, O. Geupel (Germany),
E. J. Ionaşcu, D. Kim (South Korea), C. R. Pranesachar (India), A. Stadler (Switzerland), R. Stong, Y. Sun,
R. Tauraso (Italy), M. Tetiva (Romania), GCHQ Problem Solving Group (UK), and the proposers.

Solving a Cubic to Minimize a Rational Expression

12035 [2018, 370]. Proposed by Dinh Thi Nguyen, Tuy Hòa, Vietnam. Find the minimum
value of

(a2 + b2 + c2)

(
1

(3a − b)2
+ 1

(3b − c)2
+ 1

(3c − a)2

)

as a, b, and c vary over all real numbers with 3a �= b, 3b �= c, and 3c �= a.

Solution by Li Zhou, Polk State College, Winter Haven, FL. Let x = 3b − c, y = 3c − a,
and z = 3a − b. The hypothesis implies that x, y, and z are nonzero. The given expression
becomes F/52 where

F =
(

4(x2 + y2 + z2)+ 3(x + y + z)2
)(

1

x2
+ 1

y2
+ 1

z2

)
.

To search for the minimum of F , it suffices to consider x, y > 0 and z = −t < 0. By the
AM-GM inequality, 2(x2 + y2) ≥ (x + y)2 and

1

x2
+ 1

y2
≥ 2

xy
≥ 8

(x + y)2
,

with equality when x = y. Putting x + y = s, we then have

F ≥ (2s2 + 4t2 + 3(s − t)2)

(
8

s2
+ 1

t2

)
. (∗)
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Let r equal s/t , which is positive. The right side of (∗) becomes

5r2 − 6r + 47 − 48

r
+ 56

r2
,

which we denote f (r). Notice that limr→0 f (r) = limr→∞ f (r) = ∞ and

f ′(r) = 10r4 − 6r3 + 48r − 112

r3
= 2(r + 2)(5r3 − 13r2 + 26r − 28)

r3
.

According to the Cardano formula, the only positive zero ξ of f ′(r) is

13 + 3
√

4042 + 15
√

120585 + 3
√

4042 − 15
√

120585

15
,

which is approximately 1.56431. Hence the required minimum value is f (ξ)/52, which is

2062 + 3
√

4420439038 + 12661425
√

120585 + 3
√

4420439038 − 12661425
√

120585

5460
,

or approximately 0.8086454638.

Also solved by H. Chen, G. Fera, K. Gatesman, L. Giugiuc (Romania), O. Kouba (Syria), W.-K. Lai & J. Risher,
K.-W. Lau (China), L. J. Peterson, M. Reid, J. C. Smith, A. Stadler (Switzerland), R. Stong, D. B. Tyler, and
the proposer.

Metric Spaces with Few Isometry Types

12036 [2018, 370]. Proposed by Greg Oman, University of Colorado, Colorado Springs,
CO. Two metric spaces (X, d) and (X′, d ′) are said to be isometric if there is a bijection
φ : X → X′ such that d(a, b) = d ′(φ(a), φ(b)) for all a, b ∈ X. Let X be an infinite set.
Find all metrics d on X such that (X, d) and (X′, d ′) are isometric for every subset X′ of
X of the same cardinality as X. (Here, d ′ is the metric induced on X′ by d.)

Solution by O. P. Lossers, Eindhoven University of Technology, Eindhoven, The Nether-
lands. If d(a, b) is independent of a and b when a and b differ, then (X, d) has the required
property. We show that this is the only case. Suppose that at least two nonzero distances
occur. Choose one of the distances, say δ, and define a coloring of the edges of the complete
graph with vertex set X by letting xy be red if d(x, y) = δ and blue otherwise.

Given a point p ∈ X, let R be the set of neighbors of p via red edges, and let B be the
set of neighbors of p via blue edges: X = {p} ∪ R ∪ B. Since X is infinite, R or B has the
same cardinality as X; suppose it is B. Let X′ = X \ R = {p} ∪ B. Since X′ has the same
cardinality asX, by assumption the metric spaces (X, d) and (X′, d ′) are isomorphic. Also
the edge-colored complete graph onX and the induced one onX′ are isomorphic. SinceX′
contains a vertex p incident only with blue edges, X also contains a vertex incident with
only blue edges.

Let Y denote the subset of X consisting of all points incident with at least one red edge.
The cardinality of Y must be smaller than the cardinality of X, because Y has no point
incident only with blue edges. Finally, let Y ′ = X \ Y ; the set Y ′ has the same cardinality
as X. The graph induced by Y ′ has only blue edges, which implies that the original graph
has only blue edges, contradicting our assumption.

The assumption thatR has the same cardinality asX leads to a contradiction in the same
way.

Editorial comment. Frederic Brulois and Gary Gruenhage provided a generalization: Let(
X

2

)
denote the family of 2-element subsets of X. Consider a function f :

(
X

2

) → S, where
S is any set. If X is infinite and for any subset Y of X with the same cardinality as X there

952 c© THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 126



is a bijection b : Y → X such that f ({y1, y2}) = f ({b(y1), b(y2)}) for all y1, y2 ∈ Y , then
f is a constant function.

Klaas Pieter Hart provided a different generalization: An infinite graphG that is isomor-
phic to all its induced subgraphs whose vertex sets have the same cardinality as G must be
the complete graph or have no edge.

Also solved by F. Brulois, G. Gruenhage, J. W. Hagood, K. P. Hart (Netherlands), J. H. Lindsey II, A. Pathak,
M. Reid, N. Sahoo, K. Schilling, R. Stong, and the proposer.

A Familiar Set Disguised

12037 [2018, 370]. Proposed by José Manuel Rodrı́guez Caballero, Université du Québec,
Montreal, QC, Canada. For a positive integer n, let Sn be the set of pairs (a, k) of positive
integers such that

∑k−1
i=0 (a + i) = n. Prove that the set

{
n :

∑
(a,k)∈Sn

(−1)a−k �= 0

}

is closed under multiplication.

Solution by GCHQ Problem Solving Group, Cheltenham, UK. Let A be the set defined in
the problem statement. Each (a, k) ∈ Sn satisfies

n = ka +
k−1∑
i=0

i = ka + k(k − 1)

2
,

and thus

2n = k(k + 2a − 1).

The factors k and k + 2a − 1 have opposite parity, and also k + 2a − 1 > k. Given n,
we can generate a pair (a, k) ∈ Sn by writing 2n = E ×O, where E is even and O is odd,
and setting k = min(E,O) and a = (|O − E| + 1)/2. The process is reversible, so we
have a bijection from Sn to the set of even/odd factorizations 2n = E ×O. We write these
as 2n = (2T u)× v, where u and v are both odd.

Note also that a + k = (E +O + 1)/2. If (2T u)+ v ≡ 1 (mod 4), then a + k is odd,
while if (2T u) + v ≡ 3 (mod 4), then a + k is even. Because (−1)a−k = (−1)a+k , we
have n ∈ A if and only if the number of even/odd factorizations resulting in a + k even is
different from the number resulting in a + k odd.

Let p be a prime factor of n. Switching p from u to v or vice versa does not change the
congruence class of 2T u or v modulo 4 if p ≡ 1 (mod 4). However, if p ≡ 3 (mod 4),
then the switch changes the sign of v and leaves the congruence class of 2T u unchanged,
so it changes the class of (2T u)+ v.

If some prime factor p congruent to 3 modulo 4 occurs in 2n with odd power, then for
any fixed distribution of the other factors, there are the same number of factorizations in
which p contributes an even number or an odd number of factors to v. Hence there are the
same number of factorizations with a + k even or odd, and n �∈ A.

Conversely, suppose that all such prime factors occur with even power. When all the
odd prime factors are in v, and u = 1, we have (2T u) + v ≡ 2T + 1 (mod 4), and the
class depends on whether T > 1. The class remains the same for any distribution of the
prime factors congruent to 1 modulo 4. Thus we need only consider multisets of the prime
factors congruent to 3 modulo 4, where the bound on the multiplicity of each is even. With
an even bound, the number of choices for the multiplicity of each such factor is odd. Hence
there are an odd number of multisets of the prime factors congruent to 3 modulo 4. With
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an odd number of choices, there cannot be the same number with even size as odd size.
Hence there will not be the same number of factorizations with a + k even and odd, and so
n ∈ A.

Since the product of two numbers whose prime factorizations have each prime factor
congruent to 3 modulo 4 occurring with even power also has the same property, A is closed
under multiplication.

Editorial comment. Several solvers noted that A is the set of all positive integers that can
be expressed as a sum of two squares.

Also solved by R. Chapman (UK), K. Gatesman, E. J. Ionaşcu, P. Lalonde (Canada), O. P. Lossers (Nether-
lands), J. C. Smith, and the proposer.

An Inequality with Medians

12038 [2018, 370]. Proposed by George Apostolopoulos, Messolonghi, Greece. Let ABC
be an acute triangle with sides of length a, b, and c opposite angles A, B, and C,
respectively, and with medians of length ma , mb, and mc emanating from A, B, and C,
respectively. Prove

m2
a

b2 + c2
+ m2

b

c2 + a2
+ m2

c

a2 + b2
≥ 9 cosA cosB cosC.

Solution by Subhankar Gayen, Vivekananda Mission Mahavidyalaya, India. Let M be the
midpoint of BC. Suppose that AM intersects the circumcircle of �ABC atD. By the power-
of-the-point theorem, ma · MD = a2/4, and two applications of the law of cosines yields
a2/4 = (b2 + c2)/2 −m2

a . Hence b2 + c2 = 2ma (ma + MD). Since AD is a chord of the
circumcircle, ma + MD ≤ 2R, where R is the circumradius of �ABC. Hence 4Rma ≥
b2 + c2. Using this and the two other analogous inequalities yields

m2
a

b2 + c2
+ m2

b

c2 + a2
+ m2

c

a2 + b2
≥ b2 + c2

16R2
+ c2 + a2

16R2
+ a2 + b2

16R2

= a2 + b2 + c2

8R2

= sin2A+ sin2 B + sin2 C

2

= 1 + cosA cosB cosC,

where we have used the generalized law of sines in the second-to-last step and A+ B +
C = π to obtain the last equality.

We complete the proof by showing that 1 ≥ 8 cosA cosB cosC. This follows from
cos(x) cos(y) < cos2((x + y)/2) when x �= y, because this last inequality shows that
cosA cosB cosC cannot take its maximum value on a triangle ABC unless A = B = C =
π/3.

Note that the assumption that �ABC is acute is unnecessary and also that equality holds
only when �ABC is equilateral.

Also solved by H. Bailey, M. Bataille (France), H. Chen, G. Fera, L. Giugiuc (Romania), W. Janous (Aus-
tria), O. Kouba (Syria), K.-W. Lau (China), J. H. Lindsey II, J. F. Loverde, M. Lukarevski (Macedonia),
P. Nüesch (Switzerland), P. Perfetti (Italy), C. R. Pranesachar (India), V. Schindler (Germany), D. Smith
(Canada), J. C. Smith, A. Stadler (Switzerland), R. Stong, M. Vowe (Switzerland), T. Wiandt, M. R. Yegan
(Iran), L. Zhou, T. Zvonaru (Romania), GCHQ Problem Solving Group (UK), and the proposer.
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