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Proposals

To be considered for publication, solutions should be received by March 1, 2021.

2101. Proposed by Michael Goldenberg, The Ingenuity Project, Baltimore Polytechnic
Institute, Baltimore, MD and Mark Kaplan, Towson University, Towson, MD.

Recall that the Steiner inellipse of a triangle is the unique ellipse that is tangent to each
side of the triangle at the midpoints of those sides. Consider the Steiner inellipse ES of
�ABC and another ellipse, EA, passing through the centroid G of �ABC and tangent
to
←→
AB at B and to

←→
AC at C. If ES and EA meet at M and N , let ∠MAN = α. Construct

ellipses EB and EC , introduce their points of intersection with ES , and define angles β

and γ in an analogous way. Prove that

cot α + cot β + cot γ

cot A+ cot B + cot C
= 11

3
√

5
.

2102. Proposed by Donald Jay Moore, Wichita, KS.

Let α = π/7, β = 2π/7, and γ = 4π/7. Prove the following trigonometric identities.

cos2 α

cos2 β
+ cos2 β

cos2 γ
+ cos2 γ

cos2 α
= 10,

sin2 α

sin2 β
+ sin2 β

sin2 γ
+ sin2 γ

sin2 α
= 6,

tan2 α

tan2 β
+ tan2 β

tan2 γ
+ tan2 γ

tan2 α
= 83.

Math. Mag. 93 (2020) 309–318. doi:10.1080/0025570X.2020.1801039. c©Mathematical Association of America

We invite readers to submit original problems appealing to students and teachers of advanced
undergraduate mathematics. Proposals must always be accompanied by a solution and any relevant
bibliographical information that will assist the editors and referees. A problem submitted as a
Quickie should have an unexpected, succinct solution. Submitted problems should not be under
consideration for publication elsewhere.

Proposals and solutions should be written in a style appropriate for this Magazine.
Authors of proposals and solutions should send their contributions using the Magazine’s sub-

missions system hosted at http://mathematicsmagazine.submittable.com. More detailed instruc-
tions are available there. We encourage submissions in PDF format, ideally accompanied by LATEX
source. General inquiries to the editors should be sent to mathmagproblems@maa.org.
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2103. Proposed by Péter Kórus, University of Szeged, Szeged, Hungary.

In a soccer game there are three possible outcomes: a win for the home team (denoted
1), a draw (denoted X), or a win for the visiting team (denoted 2). If there are n games,
betting slips are printed for all 3n possible outcomes. For four games, what is the
minimum number of slips you must purchase to guarantee that at least three of the
outcomes are correct on at least one of your slips?

2104. Proposed by the Missouri State University Problem Solving Group, Missouri
State University, Springfield, MO.

It is well known that no vector space can be written as the union of two proper sub-
spaces. For which m does there exist a vector space V that can be written as a union of
m proper subspaces with this collection of subspaces being minimal in the sense that
no union of a proper subcollection is equal to V ?

2105. Proposed by Marian Tetiva, National College “Gheorghe Roşca Codreanu,”
Bı̂rlad, Romania.

Let f : [0, 1]→ R be a function that is k times differentiable on [0, 1], with the kth
derivative integrable on [0, 1] and (left) continuous at 1. For integers i ≥ 1 and j ≥ 0
let

σ
(i)

j =
∑

j1+j2+···+ji=j

1j12j2 · · · iji ,

where the sum is extended over all i-tuples (j1, . . . , ji) of nonnegative integers that
sum to j . Thus, for example, σ

(i)

0 = 1, and σ
(i)

1 = 1+ 2+ · · · + i = i(i + 1)/2 for all
i ≥ 1. Also, for 0 ≤ j ≤ k let

aj = σ
(1)

j f (1)+ σ
(2)

j−1f
′(1)+ · · · + σ

(j)

1 f (j−1)(1)+ σ
(j+1)

0 f (j)(1).

Prove that ∫ 1

0
xnf (x)dx = a0

n
− a1

n2
+ · · · + (−1)k ak

nk+1
+ o

(
1

nk+1

)
,

for n→∞. As usual, we denote by f (s) the sth derivative of f (with f (0) = f ), and
by o(xn) a sequence (yn) with the property that limn→∞ yn/xn = 0.

Quickies

1103. Proposed by Elias Lampakis, Kiparissia, Greece.

Let a, b, and c be the side lengths of a triangle, r its inradius, and R its circumradius.
Show that

a2b2 + b2c2 + c2a2 ≥ 108R2r2.

1104. Proposed by George Stoica, Saint John, NB, Canada.

Prove that, for every positive real number a, there exists a sequence k1, k2, . . . of pos-
itive integers such that {a · 1k1 · 2k2 · · · · · nkn} < 1/n for all n ≥ 1. (Here {x} denotes
the fractional part of x.)
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Solutions

Tribonacci and dual Tribonacci sequences October 2019

2076. Proposed by Michael Goldenberg, The Ingenuity Project, Baltimore Polytechnic
Institute, Baltimore, MD and Mark Kaplan, Towson University, Towson, MD.

Given real numbers C0, C1, and C2, one defines a general Tribonacci (GT) sequence
{Cn} recursively by the relation Cn+3 = Cn+2 + Cn+1 + Cn for all n ≥ 0. Such GT-
sequence {Cn} is nonsingular if

� =
∣∣∣∣∣∣
C0 C1 C2

C1 C2 C3

C2 C3 C4

∣∣∣∣∣∣ �= 0.

A dual Tribonacci (DT) sequence {Dn} is one that satisfies the dual recurrence Dn+3 +
Dn+2 +Dn+1 = Dn for n ≥ 0. Show that for any nonsingular GT-sequence {Cn} with
C0, C1, C2 positive there exists a DT-sequence {Dn} such that, for all n ≥ 0,

arctan

(√
Dn

Cn

)
= arctan

(√
Dn

Cn+1

)
+ arctan

(√
Dn

Cn+2

)
+ arctan

(√
Dn

Cn+3

)
.

Composite of solutions by Robert Calcaterra, University of Wisconsin-Platteville,
Platteville, WI and Albert Stadler, Herrliberg, Switzerland.
Observe that the sequence where Dn = 0 for all n clearly satisfies the conditions of
the problem. We will therefore endeavor to find a non-trivial solution to the problem.

The addition formula for the tangent function can be extended to show that

tan(x + y + z) = tan x + tan y + tan z− tan x tan y tan z

1− tan x tan y − tan x tan z− tan y tan z
.

Therefore, the sequence Dn must satisfy

√
Dn

Cn

=
√

Dn

Cn+1
+
√

Dn

Cn+2
+
√

Dn

Cn+3
− D

3/2
n

Cn+1Cn+2Cn+3

1− Dn

Cn+1Cn+2
− Dn

Cn+1Cn+3
− Dn

Cn+2Cn+3

. (1)

If Dn �= 0, we can divide both sides of the equation by
√

Dn and solve for Dn to get

Dn = CnCn+1Cn+2 + CnCn+1Cn+3 + CnCn+2Cn+3 − Cn+1Cn+2Cn+3

Cn − Cn+1 − Cn+2 − Cn+3
.

Since Cn is a GT-sequence,

Cn − Cn+1 − Cn+2 − Cn+3 = −2 (Cn+1 + Cn+2)
and

CnCn+2Cn+3 + CnCn+1Cn+3 + CnCn+1Cn+2 − Cn+1Cn+2Cn+3

= CnCn+2Cn+3 + CnCn+1Cn+3 + Cn+1Cn+2(Cn − Cn+3)

= CnCn+2Cn+3 + CnCn+1Cn+3 − Cn+1Cn+2(Cn+1 + Cn+2)

= (CnCn+3 − Cn+1Cn+2)(Cn+1 + Cn+2).

Therefore,

Dn = Cn+1Cn+2 − CnCn+3

2
.
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Because all of the steps above are reversible, this does satisfy equation (1).
Since Dn may be negative, we recall that for real x

arctan ix =
{

i arctanh x |x| < 1,

sign(x)(π/2+ i arctanh(1/|x|)) |x| > 1.

Note that equation (1) may not translate into the desired statement about arctangents.
For example, if C0 = 8, C1 = 3, C2 = 2, then C3 = 13 and D0 = −49. We have

arctan

(√
D0

C0

)
= ln(15)

2
i,

but

arctan

(√
D0

C1

)
+ arctan

(√
D0

C2

)
+ arctan

(√
D0

C3

)
= π + ln(15)

2
i.

We will return to this issue shortly.
By the theory of linear recurrences, there are complex numbers a1, a2, a3 such that

Cn = a1r
n
1 + a2r

n
2 + a3r

n
3 .

where r1 is the real root and r2, r3 the conjugate complex roots of the equation x3 −
x2 − x − 1 = 0. Note that by Vieta’s formulas, r1r2r3 = 1.

Now

2Dn = Cn+1Cn+2 − CnCn+3

= −a1a2(r1 − r2)
2(r1 + r2)r

−n
3 − a2a3(r2 − r3)

2(r2 + r3)r
−n
1

− a3a1(r3 − r1)
2(r3 + r1)r

−n
2 .

Since Dn is a linear combination of powers of 1/r1, 1/r2, and 1/r3, it satisfies a linear
recurrence whose characteristic polynomial has these values as roots. Therefore, the
characteristic polynomial is x3 + x2 + x − 1 and Dn satisfies Dn+3 +Dn+2 +Dn+1 =
Dn as desired.

The condition � �= 0 is equivalent to

a1a2a3(r1 − r2)
2(r2 − r3)

2(r3 − r1)
2 �= 0,

which means that a1, a2, a3 �= 0 and Dn is non-trivial. Finally, |√Dn| grows like
1/
√|r2|n, while Cn grows like rn

1 , so
√

Dn/Cn grows like 1/(r1
√|r2|)n. Since

r1

√|r2| ≈ 1.579, lim
n→∞

√
Dn/Cn = 0

and for sufficiently large n we will be able to translate equation (1) into one involving
arctangents.

Also solved by Elias Lampakis (Greece), Daniel Văcaru (Romania), and the proposers. There
were two incomplete or incorrect solutions.

A triangle inequality October 2019

2077. Proposed by Li Zhou, Polk State College, Winter Haven, FL.
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Prove that in any triangle with side lengths a, b, c, inradius r , and circumradius R, we
have

a

b + c
+ b

c + a
+ c

a + b
+ r

R
>

5

3
.

Solution by Celia Schacht (graduate student), North Carolina State University,
Raleigh, NC.
We first observe that three real numbers a, b, and c are the side lengths of a triangle if
and only if there exist three positive real numbers x, y, and z, such that

a = x + y, b = y + z, and c = x + z.

Without loss of generality, we may assume that x ≤ y ≤ z.
If s denotes the semiperimeter of the triangle and A its area, then in terms of x, y, and
z, we have

s = x + y + z and A = √xyz(x + y + z).

It is well known that

r = A

s
and R = abc

4A
.

Rewritten in term of x, y, and z, the original inequality becomes

x + y

x + y + 2z
+ x + z

x + 2y + z
+ y + z

2x + y + z
+ 4xyz

(x + y)(y + z)(x + z)
>

5

3
.

To prove this we will show that both

x + y

x + y + 2z
+ x + z

x + 2y + z
>

2

3
(1)

and

y + z

2x + y + z
+ 4xyz

(x + y)(y + z)(x + z)
≥ 1 (2)

hold.

Now (1) is equivalent to

3(x + y)(x + 2y + z)+ 3(x + z)(x + y + 2z) > 2(x + y + 2z)(x + 2y + z)

which can be rewritten as

2x2 + 3xy + 3xz+ (y − z)2 > 0.

Since x, y, and z are positive, this holds.
Note that (2) is equivalent to

(y + z)2(x + z)(x + y)+ 4xyz(2x + y + z) ≥ (2x + y + z)(y + z)(x + z)(x + y),

which (since x > 0) is equivalent to

2xyz+ y2z+ yz2 ≥ x2y + xy2 + x2z+ xz2.
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This can be easily seen to be true, by noticing that, since x ≤ y ≤ z, we have

xyz ≥ x2z, xyz ≥ xy2, yz2 ≥ xz2, y2z ≥ x2y.

The original inequality is sharp, as one can see by putting a = c, b = 2a − ε, and
letting ε → 0.

Also solved by Michel Bataille (France), Robert Calcaterra, Habib Far, Subhankar Gayen
(India), Michael Goldenberg & Mark Kaplan, Walther Janous (Austria), Omran Kouba (Syria),
Elias Lampakis (Greece), Kee-Wai Lau (Hong Kong), Volkhard Schindler (Germany), Albert
Stadler (Switzerland), Daniel Văcaru (Romania), Michael Vowe (Switzerland), John Zacharias
and the proposer.

A nilpotent commutator October 2019

2078. Proposed by Florin Stanescu, Şerban Cioculescu School, Găeşti, Romania.

Let A, B be n × n complex matrices such that A2 + B2 = 2AB. Prove that (AB −
BA)m = 0 for some m ≤ ⌈ n

2

⌉
.

Solution by Koopa Tak Lun Koo, Chinese STEAM Academy, Hong Kong.
Let X = A− B and rewrite the given condition as X2 = AB− BA. We first show that
X is nilpotent. Rewriting the given condition as X2 = XB− BX, and multiplying both
sides by Xk−1 on the right gives

Xk+1 = XBXk−1 − BXk.

Thus

tr(Xk+1) = tr(XBXk−1)− tr(BXk) = tr(BXk−1 ·X)− tr(BXk) = 0

for all k ≥ 1.

If λ1, . . . , λn are the eigenvalues of X, then

tr(X
) =
n∑

i=1

λ

i = 0

for all 
 ≥ 2. This forces λi = 0 for all i, so the characteristic polynomial for X is λn.
By the Cayley–Hamilton theorem, Xn = 0.

Let m = n/2�. Then (AB− BA)m = X2m = 0 since 2m ≥ n and we are done.

Also solved by Elton Bojaxhiu (Germany) & Enkel Hysnelaj (Australia), Robert Calcaterra,
Eugene Herman, John C. Kieffer, Julio Cesar Mohnsam (Brazil), Northwestern University Problem
Solving Group, Daniel Văcaru (Romania), and the proposer. There was one incomplete or incorrect
solution.

An improper integral that almost never converges October 2019

2079. Proposed by Ovidiu Furdui and Alina Sı̂ntămărian, Technical University of Cluj-
Napoca, Cluj-Napoca, Romania.

Given real numbers a, b with b > 0, prove that the integral

J (a, b) :=
∫ ∞

0

[
2+ (x + a) ln

(
x

x + b

)]
dx

converges if and only if a = 1 and b = 2, and find the value J (1, 2).
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Solution by Eugene Herman, Grinnell, IA.
Let F(x) denote an antiderivative of the integrand. Integrate by parts using the
antiderivatives x(x + 2a)/2 and (x + 2a − b)(x + b)/2 of x + a:

F(x) = 2x +
∫

(x + a) ln x dx −
∫

(x + a) ln(x + b) dx

= 2x + 1

2
x(x + 2a) ln x −

∫
1

2
(x + 2a) dx

− 1

2
(x + 2a − b)(x + b) ln(x + b)+

∫
1

2
(x + 2a − b) dx

= 2x + 1

2
x(x + 2a) ln x − 1

2
(x + 2a − b)(x + b)

(
ln x − ln

(
x

x + b

))
− bx

2

Note that limx→0+ F(x) = −(2a − b)b(ln b)/2. So convergence of the integral depends
entirely on convergence of limx→∞ F(x). We use

ln(1− t) = −t − 1

2
t2 +O(t3) as t → 0+

and so

ln

(
x

x + b

)
= ln

(
1− b

x + b

)
= − b

x + b
− 1

2

(
b

x + b

)2

+O(1/x3) as x →∞

Hence

F(x) = 2x − bx

2
+ b2 − 2ab

2
ln x + x + 2a − b

2
(x + b)

(
− b

x + b
− 1

2

(
b

x + b

)2
)
+O

(
1

x

)

= 2x − bx

2
+ b2 − 2ab

2
ln x − (x + 2a − b)b

2
− (x + 2a − b)b2

4(x + b)
+O

(
1

x

)

In order that limx→∞ F(x) converge, the coefficients of x and ln x must be zero. Thus,
2− b/2− b/2 = 0 and b(b − 2a)/2 = 0, and so b = 2 and a = 1. Therefore, since
limx→0+ F(x) = 0,

J (1, 2) = lim
x→∞−

4x

4(x + 2)
= −1

Also solved by Ulrich Abel (Germany), Michel Bataille (France), Paul Bracken, Brian Bradie,
Robert Calcaterra, Hongwei Chen, Paul Deiermann, Shuyang Gao, Finbarr Holland (Ireland),
Walther Janous (Austria), Elias Lampakis (Greece), Missouri State University Problem Solv-
ing Group, Angel Plaza (Spain), Arthur Rosenthal, Albert Stadler (Switzerland), Daniel Văcaru
(Romania), and the proposers. There were three incomplete or incorrect solution.

Edge colorings with no monochromatic triangles October 2019

2080. Proposed by the UTSA Problem Solving Club, University of Texas at San Anto-
nio, San Antonio, TX.

For n ≥ 3, let Wn be the wheel graph consisting of an n-cycle all whose vertices are
joined to an additional distinct vertex.
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(i) How many colorings of the 2n edges of Wn using k ≥ 2 colors result in no
monochromatic triangles?

(ii) Regard two colorings of Wn as equivalent if there is a graph automorphism of Wn

that maps the first coloring to the second. If k ≥ 2 and p > 3 is prime, count all
non-equivalent colorings of Wp using k colors.

Solution by Rob Pratt, Apex, NC.
(i) We apply the principle of inclusion and exclusion (PIE). For n = 3, there are six
edges and four triangles. Ignoring monochromaticity, there are k6 edge colorings. For
each monochromatic triangle, there are k ways to color the triangle and k6−3 ways
to color the remaining edges. For each pair of monochromatic triangles (which must
share an edge), there are k ways to color the triangles and k ways to color the remaining
edge. For three (equivalently, four) monochromatic triangles, there are k ways to color
the triangles and no remaining edges. So PIE yields

k6 −
(

4

1

)
k · k6−3 +

(
4

2

)
k · k −

(
4

3

)
k +

(
4

4

)
k = k6 − 4k4 + 6k2 − 3k

edge colorings with no monochromatic triangles.
For n > 3, there are n triangles. For t < n monochromatic triangles with s shared

edges, there are kt−s ways to color the triangles and k2n−3t+s ways to color the remain-
ing edges. If all n triangles are monochromatic, there are k colorings. Now PIE yields

n−1∑
t=0

(−1)t

(
n

t

)
kt−s · k2n−3t+s + (−1)nk

=
n∑

t=0

(−1)t

(
n

t

)
(k2)n−t − (−1)n

(
n

n

)
(k2)n−n + (−1)nk

= (k2 − 1)n + (−1)n(k − 1).

(ii) We apply the Cauchy–Frobenius–Burnside theorem, which states that the number
of equivalence classes of a finite set X under the action of a finite group G is

1

|G|
∑
g∈G

Fg,

where Fg = | {x ∈ X : g · x = x} | is the cardinality of the set of fixed points of g ∈ G.
The automorphism group of the wheel graph Wp is the dihedral group of order

2p. The identity element fixes all k2p edge colorings. Because p > 3 is prime, each
nontrivial rotation fixes only the colorings for which both the p spokes and the sides
of the outer p-cycle are monochromatic, yielding k2 colorings. Each reflection fixes
only the colorings for which the (2p − 2)/2 = p − 1 edge pairs across the reflection
are monochromatic, and the two self-reflective edges can take any color. Hence the
number of non-equivalent colorings is

1

2p

(
k2p + (p − 1)k2 + p · k2 · kp−1

) = k2p + (p − 1)k2 + p · kp+1

2p
.

Editor’s Note. The proposers’ intent was that part (ii) also required triangles to be non-
monochromatic, but this was not explicitly stated. Here is a solution to the intended
problem by José Heber Nieto, Universidad del Zulia, Maracaibo, Venezuela.
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(ii) Denote the central vertex by v0 and the vertices of the n-cycle by v1, . . . , vn.
Let ri denote the spoke v0vi and call the edges v1v2, . . . , vnv1 sides.

The identity leaves fixed all the colorings, namely (k2 − 1)p − k + 1 of them by
part (i).

Since p is prime, any of the p − 1 rotations other than the identity is a generator of
the group of rotations, hence for a coloring to be fixed, all the spokes must be of the
same color and also all the sides must have the same color (different from the color of
the spokes). Thus there are k(k − 1) such colorings.

Let m = (p + 1)/2. There are
(
m−1

j

)
ways to choose exactly j pairs of consecutive

spokes from r1, . . . , rm with the same color. This gives m − j clusters of adjacent
spokes each cluster having the same color. There are k(k − 1)m−j−1 ways to color
these clusters. This gives a total of

(
m−1

j

)
k(k − 1)m−1−j ways to color r1, . . . , rm with

exactly j pairs of consecutive spokes having the same color. Now consider a reflection,
say the one through v1. Each of the spoke colorings can be extended to a coloring
of Wp without monochromatic triangles and invariant under this reflection in (k −
1)j+1km−1−j ways (the exponent of (k − 1) is j + 1 to account for the color of the side
vmvm+1). Hence the number of colorings invariant under this reflection is

m−1∑
j=0

(
m− 1

j

)
km−j (k − 1)m = k(k − 1)m(k + 1)m−1 = k(k − 1)

p+1
2 (k + 1)

p−1
2 .

Finally the number of non-equivalent colorings is

= 1

2p

(
(k2 − 1)p − k + 1+ (p − 1)k(k − 1)+ pk(k − 1)

p+1
2 (k + 1)

p−1
2

)

= 1

2
k(k − 1)

(
1+ (k2 − 1)

p−1
2

)
+ 1

2p
(k2 − 1)

(
(k2 − 1)p−1 − 1

)
.

We note that the case p = 3 may be handled with the same techniques. The group
of automorphisms is isomorphic to S4 and the number of non-equivalent colorings is

1

24
k3(k − 1)(k3 + k2 + 6k − 6).

Also solved by Elton Bojaxhiu (Germany) & Enkel Hysnelaj (Australia), and the proposers.

Answers

Solutions to the Quickies from page 310.

A1103. It is well known that

r = 2A

a + b + c
and R = abc

4A
,

where A denotes the area of the triangle. Therefore the inequality we wish to prove is
equivalent to

a2b2 + b2c2 + c2a2 ≥ 27
a2b2c2

(a + b + c)2
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or equivalently (
1

a2
+ 1

b2
+ 1

c2

)
(a + b + c)2 ≥ 27.

Hölder’s inequality is (
k∑

i=1

x
p

i

)1/p (
k∑

i=1

y
q

i

)1/q

≥
k∑

i=1

xiyi,

where xi, yi ≥ 0 and 1/p + 1/q = 1. Let k = 3, p = 3, q = 3/2, and

x1 = 1

a2/3
, x2 = 1

b2/3
, x3 = 1

c2/3
, y1 = a2/3, y2 = b2/3, y3 = c2/3.

Then Hölder’s inequality becomes(
1

a2
+ 1

b2
+ 1

c2

)1/3

(a + b + c)2/3 ≥ 3

or equivalently (
1

a2
+ 1

b2
+ 1

c2

)
(a + b + c)2 ≥ 27,

which is what we wanted to show. Note that the case when a = b = c shows that this
inequality is sharp.

A1104. Let us denote by an the fractional part of a · 1k1 · 2k2 · · · · · nkn , n ≥ 1.
Put k1 = 1 and assume that we have already defined k2, . . . , kn such that a1 < 1,

a2 < 1/2, . . . , an < 1/n. Keeping in mind that

1

n
=
∞∑
i=1

1

(n+ 1)i
,

we either have that

an <
1

n+ 1
, (1)

or there exists a unique positive integer p ≥ 1 such that

1

n+ 1
+ · · · + 1

(n+ 1)p
≤ an <

1

n+ 1
+ · · · + 1

(n+ 1)p+1
. (2)

In the first case, put kn+1 = 0; in the second case put kn+1 = p.
In both cases, an+1, which is the fractional part of the product an · (n + 1)kn+1 , is

less than 1
n+1 , by either (1) or (2), and the induction process is complete.


