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PROBLEMS AND SOLUTIONS

Edited by Daniel H. Ullman, Daniel J. Velleman, and Douglas B. West
with the collaboration of Paul Bracken, Ezra A. Brown, Zachary Franco, Christian Friesen,
László Lipták, Rick Luttmann, Hosam Mahmoud, Frank B. Miles, Lenhard Ng, Kenneth
Stolarsky, Richard Stong, Stan Wagon, Lawrence Washington, Elizabeth Wilmer, Fuzhen
Zhang, and Li Zhou.

Proposed problems should be submitted online at
americanmathematicalmonthly.submittable.com/submit.

Proposed solutions to the problems below should be submitted by December 31,
2020, via the same link. More detailed instructions are available online. Proposed
problems must not be under consideration concurrently at any other journal nor be
posted to the internet before the deadline date for solutions. An asterisk (*) after the
number of a problem or a part of a problem indicates that no solution is currently
available.

PROBLEMS

We reprint problem 12185 from the May 2020 issue, correcting errors.

12185. Proposed by George Stoica, Saint John, NB, Canada. Let n1, . . . , nk be pairwise
relatively prime odd integers greater than 1. For i ∈ {1, . . . , k}, let fi(x) = ∑ni

m=1 xm−1.
Let A be a 2k-by-2k matrix with real entries such that det fj (A) = 0 for all j ∈ {1, . . . , k}.
Prove det A = 1.

12195. Proposed by Joseph DeVincentis, Salem, MA, James Tilley, Bedford Corners, NY,
and Stan Wagon, Macalester College, St. Paul, MN. For which integers n with n ≥ 3 can a
regular n-gon be inscribed in a cube? The vertices of the n-gon must all lie on the cube but
may not all lie on a single face.

12196. Proposed by Vasile Mircea Popa, Lucian Blaga University, Sibiu, Romania. Deter-
mine which positive integers n have the following property: If a1, . . . , an are n real num-
bers greater than or equal to 1, and A, G, and H are their arithmetic mean, geometric mean,
and harmonic mean, respectively, then

G − H ≥ 1

G
− 1

A
.

12197. Proposed by Nicolai Osipov, Siberian Federal University, Krasnoyarsk, Russia.
Prove that the equation

(a2 + 1)(b2 − 1) = c2 + 3333

has no solutions in integers a, b, and c.

12198. Proposed by Michel Bataille, Rouen, France. Let A1A2A3 be a nonequilateral tri-
angle with incenter I , circumcenter O, and circumradius R. For i ∈ {1, 2, 3}, let Bi be the
point of tangency of the incircle of A1A2A3 with the side of the triangle opposite Ai , and
let Ci be the point of intersection between the circle centered at I of radius R and the ray
IBi . Let K be the orthocenter of C1C2C3. Prove that I is the midpoint of OK .
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12199. Proposed by Shivam Sharma, Delhi University, New Delhi, India. Prove
∫ ∞

0

x sinh(x)

3 + 4 sinh2(x)
dx = π2

24
.

12200. Proposed by Ibrahim Suat Evren, Denizli, Turkey. Prove that for every positive
integer m, there is a positive integer k such that k does not divide m + x2 + y2 for any
positive integers x and y.

12201. Proposed by Stephen M. Gagola, Jr., Kent State University, Kent, OH. Let F be
a field, and let G be a finite group. The group algebra F [G] is the vector space of all
formal sums

∑
g∈G agg, where ag ∈ F , with multiplication defined by extending the mul-

tiplication in G via the distributive laws. A subset S of F [G] is G-invariant if s ∈ S and
g ∈ G imply sg ∈ S. In particular, the subset G is G-invariant, as is the singleton set
{∑g∈G g}. Find all fields F and groups G such that there exists an F -linear transformation
φ : F [G] → F [G] that is not right multiplication by an element of G but that nevertheless
sends every G-invariant subset to itself.

SOLUTIONS

An Inequality on Means

12083 [2019, 82]. Proposed by Alijadallah Belabess, Khemisset, Morocco. Let x, y, and z

be positive real numbers. Prove

1

x + y
+ 1

y + z
+ 1

z + x
≥ 3

√
3

2
√

x2 + y2 + z2
.

Solution by Peter W. Lindstrom, Saint Anselm College, Manchester, NH. Applying the arith-
metic mean–harmonic mean inequality to x + y, y + z, and z + x gives

1

x + y
+ 1

y + z
+ 1

z + x
≥ 9

(x + y) + (y + z) + (z + x)
= 9

2(x + y + z)
.

The Cauchy–Schwarz inequality yields

x + y + z ≤ √
3
√

x2 + y2 + z2.

Thus

1

x + y
+ 1

y + z
+ 1

z + x
≥ 9

2(x + y + z)
≥ 3

√
3

2
√

x2 + y2 + z2
.

Also solved by M. Aassila (France), R. A. Agnew, S. Amghibech (Canada), F. R. Ataev (Uzbekistan), D. Bailey
& E. Campbell & C. Diminnie & T. Smith, M. Bataille (France), A. Berkane (Algeria), P. Bracken, B. Bradie,
R. Chapman (UK), H. Chen, W. J. Cowieson, P. P. Dályay (Hungary), H. L. Das, P. De (India), A. B. Dixit
(Canada), H. Y. Far, G. Fera (Italy), D. Fleischman, A. Garcia (France), S. Gayen (India), M. Getz & D. Jones,
O. Geupel (Germany), N. Grivaux (France), J. Grzesik, E. A. Herman, E. J. Ionaşcu, P. Ivády (Hungary),
W. Janous (Austria), N. R. Johnson, M. Goldenberg & M. Kaplan, B. Karivanov (USA) & T. S. Vassilev
(Canada), P. Khalili, K. T. L. Koo (China), O. Kouba (Syria), S. S. Kumar, H. Kwong, W.-K. Lai & J. Risher,
K.-W. Lau (China), Y. E. Lee, J. H. Lindsey II, L. Lipták, O. P. Lossers (Netherlands), A. Mahillo (Spain),
D. Ş. Marinescu & M. Mihai (Romania), L. Matejic̆ka (Slovakia), S. Meherrem (Turkey), V. Mikayelyan
(Armenia), R. Molinari, R. Nandan, H. L. Nhat, P. Nüesch (Switzerland), H. Ohtsuka (Japan), A. Pathak,
A. D. Pirvuceanu (Romania), Á. Plaza (Spain), C. R. Pranesachar (India), E. Rajabli (Azerbaijan), M. Reid,
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H. Ricardo, D. Ritter, R. E. Rogers, C. Schacht, K. Schilling, S. B. Seales, R. Shinde (India), T. de Souza Leão,
A. Stadler (Switzerland), N. Stanciu & T. Zvonaru (Romania), R. Stong, R. Tauraso (Italy), T. Toyonari (Japan),
D. B. Tyler, E. I. Verriest, J. Vinuesa (Spain), M. Vowe (Switzerland), E. A. Weinstein, T. Wiandt, H. Widmer
(Switzerland), M. R. Yegan (Iran), J. Zacharias, L. Zhou, GCHQ Problem Solving Group (UK), Iowa State
University Problem Solving Group, and the proposer.

A Characterization of Unbounded Averages

12084 [2019, 82]. Proposed by George Stoica, Saint John, NB, Canada. Let a1, a2, . . . be
a sequence of nonnegative numbers. Prove that (1/n)

∑n
k=1 ak is unbounded if and only if

there exists a decreasing sequence b1, b2, . . . such that limn→∞ bn = 0,
∑∞

n=1 bn is finite,
and

∑∞
n=1 anbn is infinite. Is the word “decreasing” essential?

Solution by Gérard Lavau, Fontaine lès Dijon, France. Let S0 = 0, and for n > 0 let Sn =∑n
k=1 ak .
(1) Let b1, b2, . . . be a decreasing sequence such that limn→∞ bn = 0,

∑∞
n=1 bn is finite,

and
∑∞

n=1 anbn is infinite. Clearly bn ≥ 0 for all n. If (1/n)
∑n

k=1 ak is bounded, say by
M , then Sn ≤ Mn for all n. By Abel summation by parts,

n∑
k=1

akbk =
n∑

k=1

(Sk − Sk−1)bk = Snbn +
n−1∑
k=1

Sk(bk − bk+1)

≤ Mnbn +
n−1∑
k=1

Mk(bk − bk+1) = M

n∑
k=1

bk ≤ M

∞∑
k=1

bk,

which contradicts our assumption that
∑∞

k=1 anbn is infinite.
(2) Conversely, suppose (1/n)

∑n
k=1 ak is unbounded. For all M , we have Sn > Mn for

sufficiently large n. Let n0 = 0, and for k > 0 choose nk so that nk > nk−1 and Snk
> 4knk .

Let bj = 1/(2knk) for nk−1 + 1 ≤ j ≤ nk . Clearly the sequence b1.b2. . . . is decreasing
and tends to 0. For all k > 0 we have

nk∑
j=1

bj =
k∑

i=1

ni∑
j=ni−1+1

bj =
k∑

i=1

ni − ni−1

2ini

≤
k∑

i=1

1

2i
≤

∞∑
i=1

1

2i
= 1.

Thus,
∑∞

j=1 bj is finite. On the other hand,

nk∑
j=1

ajbj ≥
nk∑

j=1

ajbnk
= 1

2knk

nk∑
j=1

aj = Snk

2knk

≥ 4knk

2knk

= 2k,

so
∑∞

j=1 ajbj is infinite.
If the word “decreasing” is removed, then part (1) may fail. For n ≥ 1 let bn =

(−1)n/
√

n, a2n = 1/
√

n, and a2n−1 = 0. The series
∑∞

n=1 bn converges by the alternating
series test, but

∞∑
n=1

anbn =
∞∑

n=1

a2nb2n =
∞∑

n=1

1

n
√

2
,

and so
∑∞

n=1 anbn diverges. Nevertheless, (1/n)
∑n

k=1 ak is bounded, since

1

n

n∑
k=1

ak ≤ 1

n

2n∑
k=1

ak = 1

n

n∑
k=1

a2k = 1

n

n∑
k=1

1√
k

≤ 1

n

∫ n

0

dx√
x

= 2
√

n

n
≤ 2.
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Editorial comment. Most solutions used summation by parts or the transformation bn =∑∞
k=n xk/k. In (2), the sequence b1, b2, . . . can be made strictly decreasing by replacing

it with the sequence b′
1, b

′
2, . . . , where b′

k = bk + 1/2k . When the word “decreasing” is
removed, one can construct a counterexample to (1) with nonnegative bk as follows: ak = k

and bk = 1/k when k is a power of 2, and ak = bk = 0 otherwise.

Also solved by K. F. Andersen (Canada), O. Kouba (Syria), J. H. Lindsey II, O. P. Lossers (Netherlands),
H. Park, K. Schilling, R. Stong, R. Tauraso (Italy), and the proposer.

Subsets with Equal Sums of Like Powers, Revisited

12085 [2019, 82]. Proposed by Joseph DeVincentis, Salem, MA, Stan Wagon, Macalester
College, St. Paul, MN, and Michael Elgersma, Plymouth, MN. For which positive integers
n can {1, . . . , n} be partitioned into two sets A and B of the same size so that

∑
k∈A

k =
∑
k∈B

k,
∑
k∈A

k2 =
∑
k∈B

k2, and
∑
k∈A

k3 =
∑
k∈B

k3?

Solution by Greg Marks, St. Louis University, St. Louis, MO. These conditions hold pre-
cisely for n ∈ {8k : k ≥ 2}.

First we show that divisibility by 8 is necessary. The condition |A| = |B| requires
2 | n. The condition

∑
k∈A k = ∑

k∈B k = n(n + 1)/4 then requires 4 | n. Let m = n/4.
The conditions yield

∑
k∈A k2 = 1

2

∑n
k=1 k2 = m(4m + 1)(8m + 1)/3 and

∑
k∈A k3 =

1
2

∑n
k=1 k3 = 2m2(4m + 1)2. When m is odd, these two sums have opposite parity. How-

ever,
∑

k∈A(k3 − k2) is even, since each summand is even. Therefore, 8 | n.

We write [n] for the set {1, . . . , n}. Let P� denote the set of positive integers n such
that [n] decomposes as the disjoint union of sets A and B satisfying

∑
k∈A ki = ∑

k∈B ki

for 0 ≤ i ≤ �. We show that P� is an additive semigroup in N. Given n1, n2 ∈ P�, let
{A1, B1} and {A2, B2} be such decompositions of [n1] and [n2], respectively. Let A =
A1 ∪ {a + n1 : a ∈ A2} and B = B1 ∪ {b + n1 : b ∈ B2}. Now A and B decompose [n],
and the binomial theorem yields a proof by induction on i that

∑
k∈A ki = ∑

k∈B ki for
0 ≤ i ≤ �. Hence n1 + n2 ∈ P�.

Since {16, 24} generates {8k : k ≥ 2} ⊂ N as an additive semigroup, to prove P3 =
{8k : k ≥ 2} it suffices to show that 16, 24 ∈ P3 and 8 �∈ P3.

To avoid a brute-force search, the key observation is that n ∈ P� implies 2n ∈ P�+1.
Given a decomposition {A,B} of [n] witnessing n ∈ P�, let A′ = A ∪ {b + n : b ∈ B} and
B ′ = B ∪ {a + n : a ∈ A}. Now {A′, B ′} is a decomposition of [2n], and another appli-
cation of the binomial theorem yields

∑
k∈A k�+1 = ∑

k∈B k�+1. The earlier computation
yields 2n ∈ P�, so now also 2n ∈ P�+1.

Decomposing [4] into {1, 4} and {2, 3} yields 4 ∈ P1; hence 8 ∈ P2 and 16 ∈ P3.
Decomposing [12] into {1, 3, 7, 8, 9, 11} and {2, 4, 5, 6, 10, 12} yields 12 ∈ P2. Hence
24 ∈ P3.

Finally, consider [8]. The only partition of [8] that establishes 8 ∈ P2 is the pair of sets
{1, 4, 6, 7} and {2, 3, 5, 8}. Since 13 + 43 + 63 + 73 �= 23 + 33 + 53 + 83, it follows that
8 /∈ P3. Thus P3 = {8k : k ≥ 2}.
Editorial comment. Rory Molinari pointed out that {8k : k ≥ 2} ⊆ P3 was proved by Tarry
and Barbette; see Theorem 7 of H. L. Dorwart and O. E. Brown (1937), The Tarry–Escott
problem, this Monthly 44(10): 613–626. O. P. Lossers mentioned the relation with the
Thue–Morse sequence and the Prouhet–Tarry–Escott problem.

As recounted by E. M. Wright (1959), Prouhet’s 1851 solution of the Tarry–Escott
problem of 1910, this Monthly 66(3): 199–201, Tarry and Escott independently in 1912
and 1910 gave generalizations of the fact that the integers 0, . . . , 2k+1 − 1 can be split
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into two sets A and B so that the sum of the mth powers of elements of the two sets are
equal for 0 ≤ m ≤ k. However, Prouhet had stated this more generally for j sets. Within
{0, . . . , j k+1 − 1}, let Ai consist of those numbers whose entries in their j -ary expansions
have sum congruent to i modulo j . The result is that the sum of the mth powers of the
numbers in Ai is independent of i, for each m with 0 ≤ m ≤ k. In addition to a proof in
the cited article, other proofs appear in D. H. Lehmer (1947), The Tarry–Escott problem,
Scripta Math. 13: 37–41, and E. M. Wright (1949), Equal sums of like powers, Proc.
Edinburgh Math. Soc. (2)8: 138–142.

The Tarry–Escott Problem appeared again as recently as Problem 10284 [1993, 185;
1995, 843] in this Monthly. The problem has a substantial literature, including a short
book: A. Gloden (1944), Mehrgradige Gleichungen, 2nd ed., Groningen: P. Noordhoff.

For the problem of determining the set Pk of integers for which such splittings occur,
the case k = 3 considered here was solved in D. W. Boyd (1997), On a problem of Byrnes
concerning polynomials with restricted coefficients, Math. Comp. 66: 1697–1703. The
set Pk is now known for k up to 7; see J. Buhler, S. Golan, R. Pratt, and S. Wagon
(2019), Symmetric Littlewood polynomials, spectral-null codes, and equipowerful parti-
tions, arxiv.org/abs/1912.03491.

Also solved by K. David & A. van Groningen, S. M. Gagola Jr., K. Gatesman, Y. J. Ionin, M. E. Kidwell
& M. D. Meyerson, P. Lalonde (Canada), O. P. Lossers (Netherlands), R. Molinari, M. Reid, N. C. Singer,
R. Tauraso (Italy), M. Wildon, GCHQ Problem Solving Group (UK), Missouri State University Problem Solv-
ing Group, and the proposers.

Maximizing the Area of an Incenter Triangle

12086 [2019, 82]. Proposed by Miguel Ochoa Sanchez, Lima, Peru, and Leonard Giugiuc,
Drobeta Turnu Severin, Romania. Let ABC be a triangle with right angle at A, and let H

be the foot of the altitude from A. Let M , N , and P be the incenters of triangles ABH ,
ABC, and ACH , respectively. Prove that the ratio of the area of triangle MNP to the area
of triangle ABC is at most (

√
2 − 1)3/2, and determine when equality holds.

Solution by Dmitry Fleischman, Santa Monica, CA. Let the sides of the triangle be denoted
a, b, and c, as usual, and let the inradii of �ABC, �ACH , and �ABH be denoted rA, rB ,
and rC , respectively. As is well known, the altitude on the hypotenuse of a right triangle
divides the triangle into two smaller triangles that are similar to it. All corresponding sides,
as well as any other corresponding linear measurements such as altitudes and inradii, are
in the proportion a : b : c, which are the hypotenuse lengths of the three triangles. In
particular, the inradii rA, rB , and rC are in the proportion a : b : c.

Let K(XYZ) denote the area of �XYZ. We determine K(MNP)/K(ABC) by com-
puting the two ratios K(MNP)/K(BNC) and K(BNC)/K(ABC).

The angle bisector at B contains both M and N , and likewise the angle bisector at
C contains both P and N . Hence B, M , and N are collinear, as are C, P , and N . Let
the projections of M , N , and P onto BC be denoted M ′, N ′, and P ′, respectively. Since
�MNP and �BNC share the angle at N , the ratio of their areas is the product of NM/NB

and NP/NC. By similar triangles,

NM

NB
= 1 − MB

NB
= 1 − MM ′

NN ′ = 1 − rC

rA

= 1 − c

a
,

and a similar calculation shows that NP/NC = 1 − b/a. Thus

K(MNP)

K(BNC)
=

(
1 − b

a

) (
1 − c

a

)
= 1 − b + c

a
+ bc

a2
.
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Since K(BNC) = arA/2 and K(ABC) = (a + b + c)rA/2,

K(BNC)

K(ABC)
= a

a + b + c
.

We conclude

K(MNP)

K(ABC)
=

(
1 − b + c

a
+ bc

a2

)
a

a + b + c
= 1 − (b + c)/a + bc/a2

1 + (b + c)/a
.

Let t = (b + c)/a, so that (t2 − 1)/2 = bc/a2. We express K(MNP)/K(ABC) as
(t − 1)2/(2t + 2), which we denote by f (t). Since

t = sin C + cos C = √
2 cos(C − π/4)

and 0 < C < π/2, we have 1 < t ≤ √
2. Since

f ′(t) = (t − 1)(t + 3)

2(t + 1)2
,

we see that f is increasing on [1,
√

2]. Hence f achieves its maximum on [1,
√

2] at
t = √

2, and that maximum value is

f
(√

2
) = (

√
2 − 1)2

2(
√

2 + 1)
= (

√
2 − 1)3

2
,

which was to be shown. Note that t = √
2 when cos(C − π/4) = 1, or when C = π/4,

i.e., when the original triangle is isosceles.

Also solved by S. Amghibech (Canada), M. Bataille (France), H. Chen, P. P. Dályay (Hungary), P. De (India),
R. Downes, A. Fanchini (Italy), G. Fera (Italy), K. Gatesman, O. Geupel (Germany), M. Goldenberg &
M. Kaplan, W. Janous (Austria), B. Karaivanov (USA) & T. S. Vassilev (Canada), K. T. L. Koo (China),
O. Kouba (Syria), J. H. Lindsey II, O. P. Lossers (Netherlands), M. Lukarevski (Macedonia), D. Ş. Marinescu
& M. Monea (Romania), C. Mindrila, R. Nandan, C. Pranesachar (India), A. Stadler (Switzerland), R. Stong,
K. Sullivan, R. Tauraso (Italy), M. Vowe (Switzerland), T. Wiandt, L. Zhou, GCHQ Problem Solving Group
(UK), and the proposer.

Nontrivial Solutions To a Matrix Equation

12087 [2019, 82]. Proposed by M. L. J. Hautus, Heeze, Netherlands. Let K be a field, and
let A be a linear map from Kn into itself. The equation X2 = AX has the trivial solutions
X = 0 and X = A. Show that it has a nontrivial solution if and only if the characteristic
polynomial det(λI − A) is reducible, with the following sole exception: If K has two
elements, n = 2, and A is nilpotent and nonzero, then the characteristic polynomial is
reducible, yet X2 = AX has no nontrivial solutions.

Solution by Koopa Tak Lun Koo, Chinese STEAM Academy, Hong Kong, China. The prob-
lem is trivial if n = 1 or A = 0. Suppose n ≥ 2 and A �= 0.

Suppose that X2 = AX has a solution X outside {0, A}, and consider the characteristic
polynomial det(λI − A). Let V = {Xv : v ∈ Kn}. Note that V �= {0}. If V = Kn, then X

is surjective and hence invertible, so X = A. Thus V is a proper subspace of Kn. Since
A(Xv) = (AX)v = X2v = X(Xv) ∈ V for all v ∈ Kn, we see that A maps V into V .
Choose a basis of V and extend it to a basis of Kn. With respect to this basis, A has a

matrix representation of the form
[

B

0
C

D

]
, where both B and D are square with order less

than n. Thus det(λI − A) = det(λI − B) det(λI − D), so det(λI − A) is reducible.
For the converse, suppose det(λI − A) = p(λ)q(λ), where deg(p) = m with 1 ≤ m <

n. By the Cayley–Hamilton theorem, p(A)q(A) = q(A)p(A) = 0.
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We claim that there is an A-invariant proper subspace of Kn. If p(A) = 0 (or similarly
if q(A) = 0), take a nonzero w ∈ Kn. The span of {Ajw : 0 ≤ j ≤ m − 1} is A-invariant,
and the dimension of the span is at most m, which is less than n. On the other hand,
if p(A) �= 0 and q(A) �= 0, then p(A) cannot be surjective, because q(A)p(A) = 0 and
q(A) �= 0. Thus the image of p(A) is proper and A-invariant.

Let W be an A-invariant proper subspace of Kn with dimension k, where 1 ≤ k < n.
Choose a basis of W and extend it to a basis for Kn. The matrix representation of A with

respect to this basis has the form
[

P

0
Q

R

]
, where P has order k and R has order n − k.

Setting X =
[

P

0
T

0

]
, we have X2 =

[
P 2

0
PT

0

]
= AX.

It remains to choose T so that X /∈ {0, A}. If n > 2 or |K| > 2, then we can choose
T /∈ {0,Q}, giving X2 = AX nontrivial solutions. When n = 2 and K = {0, 1}, if A is

not nilpotent, then A =
[

1
0

Q

R

]
(with respect to some basis). Let X =

[
1
0

0
0

]
if Q �= 0, and

X =
[

1
0

T

0

]
with T �= 0 if Q = 0. Again X2 = AX has solutions outside {0, A}.

When n = 2 and K = {0, 1}, and A is nilpotent, we have A =
[

0
0

1
0

]
(up to similarity).

Note that det(λI − A) = λ2 is reducible. Let
[

a

c

b

d

]
, where a, b, c, d ∈ {0, 1}, be a solution

to X2 = AX. Computation yields a = c = d = 0. Now X = 0 if b = 0 and X = A if
b = 1, so X2 = AX has no nontrivial solutions.

Also solved by D. Fleischman, S. M. Gagola, Jr., O. P. Lossers (Netherlands), J. H. Smith, and the proposer.

An Integral Inequality

12088 [2019, 83]. Proposed by Florin Stanescu, Serban Cioculescu School, Gaesti, Roma-
nia. Let k be a positive integer with k ≥ 2, and let f : [0, 1] → R be a function with
continuous kth derivative. Suppose f (k)(x) ≥ 0 for all x ∈ [0, 1], and suppose f (i)(0) = 0
for all i ∈ {0, 1, . . . , k − 2}. Prove

∫ 1

0
xk−1f (1 − x) dx ≤ (k − 1)! k!

(2k − 1)!

∫ 1

0
f (x) dx.

Solution by Koopa Tak Lun Koo, Chinese STEAM Academy, Hong Kong, China. Let
Q(x) = x2k−1 − xk . We have Q(i)(0) = 0 when 0 ≤ i ≤ k − 1 and Q(1) = 0. Integration
by parts k times yields

∫ 1

0
Q(k)(x)f (1 − x) dx =

∫ 1

0
Q(x)f (k)(1 − x) dx ≤ 0,

since Q(x) ≤ 0 and f (k)(1 − x) ≥ 0 both hold on [0, 1]. Substituting

Q(k)(x) = (2k − 1)(2k − 2) · · · k · xk−1 − k!

into this gives

(2k − 1)!

(k − 1)!

∫ 1

0
xk−1f (1 − x) dx − k!

∫ 1

0
f (1 − x) dx ≤ 0.

Therefore∫ 1

0
xk−1f (1 − x) dx ≤ (k − 1)! k!

(2k − 1)!

∫ 1

0
f (1 − x) dx = (k − 1)! k!

(2k − 1)!

∫ 1

0
f (x) dx,

where we have used the change of variable x �→ 1 − x in the last step.
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Also solved by U. Abel (Germany), S. Amghibech (Canada), K. F. Andersen (Canada), P. Bracken, B. Bradie,
R. Chapman (UK), P. P. Dályay (Hungary), K. Gatesman, E. A. Herman, O. Kouba (Syria), J. H. Lindsey II,
O. P. Lossers (Netherlands), D. Ş. Marinescu & M. Monea (Romania), V. Mikayelyan (Armenia), M. Omarjee
(France), H. Park, A. Pathak, K. Schilling, A. Stadler (Switzerland), R. Stong, R. Tauraso (Italy), E. I. Verriest,
T. Wiandt, and the proposer.

Ring Homomorphisms

12089 [2019, 83]. Proposed by Greg Oman, University of Colorado, Colorado Springs,
CO, and Adam Salminen, University of Evansville, Evansville, IN. All rings in this prob-
lem are assumed to be commutative with a nonzero multiplicative identity. A homomor-
phism from a ring R to a ring S is an identity-preserving map φ : R → S such that
φ(x + y) = φ(x) + φ(y) and φ(xy) = φ(x)φ(y) for all x, y ∈ R. Consider the following
two properties of a ring R:

(1) For every proper ideal I of R, there is an injective homomorphism φ : R/I → R.
(2) For every proper ideal I of R, there is an injective homomorphism φ : R → R/I .

(a) Must a ring that enjoys property (1) be a field?
(b) Must a ring that enjoys property (2) be a field?
(c) Must a ring that enjoys properties (1) and (2) be a field?

Solution by O. P. Lossers, Eindhoven University of Technology, Eindhoven, Netherlands.
(a) The answer is no. For example, let K be a field and take R = K[x] mod x2. The only
nontrivial ideal I is (x), and R/(x) = K , which embeds into R. Yet R is not a field.
Another example is R = K ⊕ K .

(b) The answer is no again. Let K be a field, and let 〈x〉 be a sequence such that xn

is transcendental over K(x1, . . . , xn−1) for n ≥ 1. Write F = K(x2, x3, . . .) and E =
K(x1, x2, . . .), and let R be F [x1], the polynomial ring in x1 over F . Any ideal I of R

has the form I = (f (x1)), where f (x1) = xm
1 − fm−1x

m−1
1 − · · · − f0. Hence

R/I = {a0 + · · · + am−1x
m−1
1 : a0, . . . , am−1 ∈ F and xm = fm−1x

m−1
1 + · · · + f0}.

Since R embeds into E, E is isomorphic to F , and F embeds into R/I , we see that R

embeds into R/I . Yet R is not a field.

(c) Here the answer is yes. First let I be a maximal ideal of R. (Note that I exists by Zorn’s
lemma.) Now let K = R/I ; note that K is a field. By (2), R embeds into K . So we may
assume R ⊆ K and have 0 = 0R and 1 = 1R in K . Hence R has no zero divisors. Now for
r ∈ R − {0}, let r−1 be the inverse of r in K , and take I = (r2). We have r2 ≡ 0 mod I .
By (1), R/I has no zero divisors, so we must have r ≡ 0 mod I . Hence r ∈ I , so r = r2a

with a ∈ R. Now ra = 1 and a = r−1 ∈ R.

Editorial comment. The answer to (c) assumes the existence of a maximal ideal, which
depends on Zorn’s lemma or some other statement equivalent to the axiom of choice.

Also solved by A. J. Bevelacqua, S. Dey, G. Marks, M. Reid, Missouri State University Problem Solving
Group, and the proposer.

A Pell–Lucas Computation of Pi

12090 [2019, 180]. Proposed by Hideyuki Ohtsuka, Saitama, Japan. The Pell–Lucas num-
bers Qn satisfy Q0 = 2, Q1 = 2, and Qn = 2Qn−1 + Qn−2 for n ≥ 2. Prove

∞∑
n=1

arctan

(
2

Qn

)
arctan

(
2

Qn+1

)
= π2

32
.
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Solution by M. Vowe, Therwil, Switzerland. The solutions of the equation x2 − 2x − 1 = 0
are p = 1 + √

2 and q = 1 − √
2, yielding Qn = Apn + Bqn. Since Q0 = Q1 = 2, we

obtain Qn = pn + qn. For simplicity, we write A(x) for arctan(x). Note the identities
A(u) + A(1/u) = π/2 and

A(u) − A(v) = A

(
u − v

1 + uv

)

for u, v > 0. When n is odd, qn = −p−n, and so

A

(
2

Qn

)
= π

2
− A

(
Qn

2

)
= π

2
− A

(
pn − p−n

2

)

= π

2
− (

A(pn) − A(p−n)
) = π

2
−

(
2A(pn) − π

2

)
= π − 2A(pn).

When n is even, qn = p−n, and so

A

(
2

Qn

)
= A

(
2

pn + qn

)
= A

(
2pn

1 + p2n

)

= A

(
pn(p − 1/p)

1 + p2n

)
= A

(
pn+1 − pn−1

1 + p2n

)
= A(pn+1) − A(pn−1).

Now the even partial sums of the specified series are given by

S2N =
N∑

k=1

(
π − 2A

(
p2k−1

)) (
A

(
p2k+1

) − A
(
p2k−1

))

+
N∑

k=1

(
A

(
p2k+1

) − A
(
p2k−1

)) (
π − 2A

(
p2k+1

))

= 2π

N∑
k=1

(
A

(
p2k+1

) − A
(
p2k−1

)) − 2
N∑

k=1

(
A2

(
p2k+1

) − A2
(
p2k−1

))

= 2π
(−A(p) + A

(
p2N+1

)) − 2
(−A2(p) + A2

(
p2N+1

))
.

Since

−1 = tan(2(3π/8)) = 2 tan(3π/8)

1 − tan2(3π/8)
,

A(p) = A(1 + √
2) = 3π/8. Finally, since limn→∞ A(pn) = π/2,

lim
N→∞ SN = 2π

(
−3π

8
+ π

2

)
− 2

(
−9π2

64
+ π2

4

)
= π2

32
.

Editorial comment. Giuseppe Fera obtained a similar result for Fibonacci numbers, with
2/Qn replaced by 1/Fn, yielding the sum π2/8.

Also solved by P. Bracken, B. Bradie, P. Budney, R. Chapman (UK), G. Fera (Italy), D. Garth, K. Gatesman,
K. T. L. Koo (China), O. P. Lossers (Netherlands), R. Molinari, M. Omarjee (France), M. A. Prasad (India),
A. Stadler (Switzerland), R. Stong, R. Tauraso (Italy), T. Wiandt, Y. Xiang (China), J. Zacharias, L. Zhou,
GCHQ Problem Solving Group (UK), and the proposer.
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