
Chapter 4

Principle of Mathematical
Induction

Theorem 4.1. (Principle of Mathematical Induction) Let Sn be a statement about a positive
integer n. Suppose that

1. S1 is true,

2. If k ≥ 1 and Sk is true, then Sk+1 is true.

Then Sn is true for all positive integers n.

Note. Conditions 1 and 2 in the above theorem are called the basis step and inductive step
respectively.

This principle is easy to understand using the following example: suppose we know how
to get to the first floor of a building (e.g. we know where an entrance is), and we also know
how to get from any floor to the next one (e.g. we know where an elevator or a staircase is).
Then we’ll be able to get to any floor in this building. Namely, we’ll be able get to the first
floor, and then from the first to the second, and then from the second to the third, and so
on. The same is true for any statement. If we can check that S1 is true, then the second
condition in theorem 4.1 ensures that S2 follows from S1, S3 follows from S2, and so on.
Thus Sn is true for any natural number n.

Mathematical Induction is used in all areas of mathematics. It can be used to prove
summation formulas such as in the next example, various number theory, algebraic, and
geometric statements.

Example 4.2. Prove that for any natural number n,

1 + 2 + 3 + . . .+ n =
n(n+ 1)

2
.

Proof. We will prove this identity using Mathematical Induction.

Basis step: if n = 1, the formula says that 1 =
1 · (1 + 1)

2
which is true.

Inductive step: suppose the formula holds for n = k, i.e. that

1 + 2 + 3 + . . .+ k =
k(k + 1)

2
(4.1)
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is true. We have to show that the formula holds for n = k + 1, i.e. that

1 + 2 + 3 + . . .+ (k + 1) =
(k + 1)((k + 1) + 1)

2

is true. Adding k + 1 to both sides of (4.1) gives:

1 + 2 + 3 + . . .+ k + (k + 1) =
k(k + 1)

2
+ (k + 1)

=
k(k + 1) + 2(k + 1)

2

=
(k + 2)(k + 1)

2

=
((k + 1) + 1)(k + 1)

2
.

Note. For any specific value of n, it is easy to check that the identity holds. For example,
for the first four natural numbers we have:

1 =
1 · (1 + 1)

2
, 1 + 2 =

2 · (2 + 1)

2
, 1 + 2 + 3 =

3 · (3 + 1)

2
, 1 + 2 + 3 + 4 =

4 · (4 + 1)

2
.

However, remember that it is not sufficient to check some values of n. We had to prove the
statement for all natural numbers n.

Remark. We might want to prove a statement Sn for all n ≥ 0, or for all n ≥ 2, etc., rather
than for all n ≥ 1. In this case, the basis step should check that the statement is valid for
the smallest value of n, say, n = 0, or n = 2 in the above cases, and the inequality k ≥ 1 in
the inductive step should be modified accordingly (k ≥ 0, or k ≥ 2, etc.).

Sometimes to prove Sk+1, it is insufficient to assume Sk alone, but Sn for n ≤ k is needed.
Then we use the so-called Strong Induction formulated below.

Theorem 4.3. (Strong Mathematical Induction) Let Sn be a statement about a positive
integer n. Suppose that

1. S1 is true,

2. If k ≥ 1 and Sn is true for all 1 ≤ n ≤ k, then Sk+1 is true.

Then Sn is true for all positive integers n.

Remark. As above, we might want to start with 0 or 2 or something else rather than with 1.

Example 4.4. Prove that any integer n ≥ 2 can be written in the form n = 2a + 3b for
some nonnegative integers a and b (we will say that n is a nonnegative linear combination of
2 and 3).

Proof. Basis step. If n = 2, we have n = 2 · 1 + 3 · 0.
Inductive step. Suppose that k ≥ 2 and the statement holds for all 2 ≤ n ≤ k. We want to
prove it for n = k + 1.
Case I. k = 2, so k + 1 = 3. Then k + 1 = 3 = 2 · 0 + 3 · 1.
Case II. k ≥ 3, then 2 ≤ k − 1 ≤ k, thus the statement holds for n = k − 1. We have
k−1 = 2a+3b for some nonnegative integers a and b. Then k+1 = k−1+2 = 2a+3b+2 =
2(a+ 1) + 3b, so k + 1 is a nonnegative linear combination of 2 and 3.
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Remark. Notice that case I above simply checks that the statement holds for n = 3. In
literature, this calculation is often moved to the basis step.

Problems

1. Prove that the following formulas hold for any natural n.

(a) 12 + 22 + 32 + . . .+ n2 =
n(n+ 1)(2n+ 1)

6

(b) 13 + 23 + 33 + . . .+ n3 =

(
n(n+ 1)

2

)2

(c) 1 · 1! + 2 · 2! + . . .+ n · n! = (n+ 1)!− 1

(d) 1 · 2 + 2 · 3 + 3 · 4 + . . .+ n(n+ 1) =
n(n+ 1)(n+ 2)

3
(e) 1 + 3 + 5 + . . .+ (2n− 1) = n2

2. Prove that for any positive integer n, n < 2n.

3. Prove that if q is a positive integer, then 32
q − 1 is divisible by 2q+2.

4. Suppose that 2n points are given in space, where n ≥ 2. Altogether n2+1 line segments
are drawn between these points. Prove that there is at least one triangle (a set of three
points which are joined pairwise by line segments).

5. Let {F0, F1, F2, . . .} be the Fibonacci sequence defined by F0 = 0, F1 = 1, and
Fn+1 = Fn + Fn−1, n ≥ 1. Prove the following identities.

(a) F1F2 + F2F3 + . . .+ F2n−1F2n = F 2
2n

(b) F 2
1 + F 2

2 + . . .+ F 2
n = FnFn+1

(c) Fn−1Fn+1 = F 2
n + (−1)n

(d)

[
1 1
1 0

]n
=

[
Fn+1 Fn

Fn Fn−1

]

(e) F 2
n−1 + F 2

n = F2n−1

6. There are n identical cars on a circular track. Among all of them, they have just enough
gas for one car to complete a lap. Show that there is a car which can complete a lap
by collecting gas from other cars on its way around.

7. Every road in Sikinia is one-way. Every pair of cities is connected by exactly one direct
road. Show that there exists a city which can be reached from every other city either
directly or via at most one other city.

8. Suppose that n lines are given in the plane. They divide the plane into regions. Show
that it is possible to color the plane with two colors so that no regions with a common
boundary line are colored the same way. Such a coloring is called a proper coloring.

9. Consider a few points in the plane and a few line segments connecting some of them
so that (1) no two line segments intersect, and (2) each point is connected with at
least two other points (so there are no isolated points and there are no “hanging” line
segments). Such line segments divide the plane into several regions. Such a picture is
called a map. Prove that a map can be properly colored with two colors if and only
if each point is connected with an even number of other points. (See problem 8 for
definition of a proper coloring)
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10. Let α be any real number such that α+
1

α
∈ Z. Prove that αn+

1

αn
∈ Z for any n ∈ N.

11. Prove that 1 <
1

n+ 1
+

1

n+ 2
+ . . .+

1

3n+ 1
< 2.

12. Let n be any natural number. Consider all nonempty subsets of the set {1, 2, . . . , n},
which do not contain any neighboring elements. Prove that the sum of the squares of the
products of all numbers in these subsets is (n+1)!−1. (For example, if n = 3, then such
subsets of {1, 2, 3} are {1}, {2}, {3}, and {1, 3}, and 12+22+32+(1 ·3)2 = 23 = 4!−1.)

13. Prove that the determinant of the n× n matrix Mn with entries

mij =





5 if i = j
2 if |i− j| = 1
0 otherwise

is equal to
1

3
(4n+1 − 1).

14. Find the determinant of the n× n matrix An with entries

aij =





2 if i = j
1 if |i− j| = 1
0 otherwise

.

Hint: calculate the determinants of A1, A2, A3, and A4. Notice the pattern. Guess a
formula for detAn, and then prove it by Mathematical Induction.

15. Prove that if any one square of a 2n × 2n chessboard is removed, then the remaining
board can be covered by L-trominoes, i.e. the figures consisting of 3 squares as shown
below.


