Problems and Solutions

Greg Oman \& Charles N. Curtis

To cite this article: Greg Oman \& Charles N. Curtis (2022) Problems and Solutions, The College Mathematics Journal, 53:4, 319-325, DOI: 10.1080/07468342.2022.2100155

To link to this article: https://doi.org/10.1080/07468342.2022.2100155

Published online: 01 Aug 2022.

Submit your article to this journalArticle views: 364

View related articles

View Crossmark data

PROBLEMS AND SOLUTIONS

EDITORS

Greg Oman
CMJ Problems
Department of Mathematics
University of Colorado, Colorado Springs
1425 Austin Bluffs Parkway
Colorado Springs, CO 80918
email: cmjproblems@maa.org

Charles N. Curtis
CMJ Solutions
Mathematics Department Missouri Southern State University
3950 E Newman Road
Joplin, MO 64801
email: cmjsolutions@maa.org

This section contains problems intended to challenge students and teachers of college mathematics. We urge you to participate actively both by submitting solutions and by proposing problems that are new and interesting. To promote variety, the editors welcome problem proposals that span the entire undergraduate curriculum.

Proposed problems should be sent to Greg Oman, either by email (preferred) as a pdf, $T_{E} X$, or Word attachment or by mail to the address provided above. Whenever possible, a proposed problem should be accompanied by a solution, appropriate references, and any other material that would be helpful to the editors. Proposers should submit problems only if the proposed problem is not under consideration by another journal.

Solutions to the problems in this issue should be sent to Chip Curtis, either by email as a pdf, $\mathrm{T}_{E} X$, or Word attachment (preferred) or by mail to the address provided above, no later than March 15, 2023. Sending both pdf and $T_{E} X$ files is ideal.

PROBLEMS

1231. Proposed by George Apostolopoulos, Messolonghi, Greece.

Let $A B C$ be a triangle. Show that $\sum_{\alpha=\angle A, \angle B, \angle C} \sin ^{3}(\alpha) \cos (\alpha) \leq \frac{9 \sqrt{3}}{16}$.
1232. Proposed by Jacob Guerra, Salem State University, Salem, MA.

Define, for every non-negative integer n, the nth Catalan number by $C_{n}:=\frac{1}{n+1}\binom{2 n}{n}$. Consider the sequence of complex polynomials in z defined by $z_{k}:=z_{k-1}^{2}+z$ for every non-negative integer k, where $z_{0}:=z$. It is clear that z_{k} has degree 2^{k} and thus has the representation $z_{k}=\sum_{n=1}^{2^{k}} M_{n, k} z^{n}$, where each $M_{n, k}$ is a positive integer. Prove that $M_{n, k}=C_{n-1}$ for $1 \leq n \leq k+1$.

1233. Proposed by Albert Natian, Los Angeles Valley College, Valley Glen, CA.

Suppose that X and Y are independent, uniform random variables over [0, 1]. Define U_{X}, V_{X}, and B_{X} as follows: U_{X} is uniform over $[0, X], V_{X}$ is uniform over [$\left.X, 1\right]$, and $B_{X} \in\{0,1\}$, with $P\left(B_{X}=1\right)=X$, and $P\left(B_{X}\right)=0=1-X$. Now define random variables Z and W_{X} as follows:

$$
\begin{gathered}
Z=(Y-X) \mathbf{1}\{Y \geq X\}+(1-X+Y) \mathbf{1}\{Y<X\}, \text { and } \\
W_{X}=B_{X} \cdot U_{X}+\left(1-B_{X}\right) V_{X} .
\end{gathered}
$$

Prove that both Z and W_{X} are uniform over $[0,1]$. Here, $\mathbf{1}[S]$ is the indicator function that is equal to 1 if S is true and 0 otherwise.

[^0]1234. Proposed by Moubinool Omarjee, Lycée Henry IV, Paris, France.

For every positive integer n, set $a_{n}:=\sum_{k=1}^{n} \frac{1}{k^{4}}$ and $b_{n}:=\sum_{k=1}^{n} \frac{1}{(2 k-1)^{4}}$. Compute $\lim _{n \rightarrow \infty} n^{3}\left(\frac{b_{n}}{a_{n}}-\frac{15}{16}\right)$.
1235. Proposed by Greg Oman, University of Colorado at Colorado Springs, Colorado Springs, CO.
Let S be a set, and let $f: S \rightarrow S$ be a function. For $s \in S$, the orbit of s is defined by $\mathcal{O}(s):=\left\{f^{n}(s): n \geq 0\right\}$, where $f^{0}: S \rightarrow S$ is the identity map and f^{n} is the n-fold composition of f with itself for $n>0$. A subset $X \subseteq S$ is closed under f provided that for all $x \in X$, also $f(x) \in X$. Finally, if X is closed under F, we say that X is finitely generated if there is a finite $F \subseteq X$ such that $X=\bigcup_{x \in F} \mathcal{O}(x)$. Find all structures (S, f) up to isomorphism where S is not finitely generated, but every proper subset of S closed under f is finitely generated. Note that (S, f) and (T, g) are isomorphic if there is a bijection $\varphi: S \rightarrow T$ such that $\varphi(f(s))=g(\varphi(s))$ for all $s \in S$.

SOLUTIONS

Harmonic, Fibonacci, and triangular numbers

1206. Proposed by Seán M. Stewart, Bomaderry, NSW, Australia.

Let $H_{n}:=\sum_{k=1}^{n} \frac{1}{k}$ denote the nth harmonic number, let F_{n} denote the nth Fibonacci number, where $F_{0}:=0, F_{1}:=1$, and $F_{n}:=F_{n-1}+F_{n-2}$ for $n \geq 2$. Further, let T_{n} be the nth triangular number defined by $T_{0}:=0$ and $T_{n}:=n+T_{n-1}$ for $n \geq 1$, and let $\varphi:=\frac{1+\sqrt{5}}{2}$ be the golden ratio. Prove the following:

$$
\sum_{n=1}^{\infty} \frac{T_{n} H_{n} F_{n}}{2^{n}}=52 \log (2)+\frac{232}{\sqrt{5}} \log (\varphi)+73 .
$$

Solution by Hongwei Chen, Christopher Newport University, Newport News, Virginia.
Recall the generating function of the harmonic numbers:

$$
\sum_{n=1}^{\infty} H_{n} x^{n}=-\frac{\log (1-x)}{1-x}
$$

Let

$$
f(x):=-\frac{x \log (1-x)}{1-x}
$$

Differentiating

$$
\sum_{n=1}^{\infty} H_{n} x^{n+1}=f(x)
$$

twice leads to

$$
\begin{equation*}
\sum_{n=1}^{\infty} n(n+1) H_{n} x^{n-1}=f^{\prime \prime}(x) \tag{1}
\end{equation*}
$$

Using this fact and $T_{n}=n(n+1) / 2$ we find the generating function of $\left\{T_{n} H_{n}\right\}_{n=1}^{\infty}$:

$$
\sum_{n=1}^{\infty} T_{n} H_{n} x^{n}=\frac{1}{2} x f^{\prime \prime}(x):=g(x)
$$

Direct computation gives

$$
g(x)=\frac{x}{2}\left(\frac{2}{(1-x)^{2}}+\frac{3 x}{(1-x)^{3}}-\frac{2 \log (1-x)}{(1-x)^{2}}-\frac{2 x \log (1-x)}{(1-x)^{3}}\right) .
$$

Using the well-known Binet formula

$$
F_{n}=\frac{1}{\sqrt{5}}\left(\phi^{n}-\left(-\frac{1}{\phi}\right)^{n}\right),
$$

and with some simplifications, we have

$$
\begin{align*}
\sum_{n=1}^{\infty} \frac{T_{n} H_{n} F_{n}}{2^{n}} & =\frac{1}{\sqrt{5}}\left(g\left(\frac{\phi}{2}\right)-g\left(-\frac{1}{2 \phi}\right)\right) \\
& =73-\frac{130-58 \sqrt{5}}{5} \log \left(1+\frac{1}{2 \phi}\right)-\frac{130+58 \sqrt{5}}{5} \log \left(1-\frac{\phi}{2}\right) \tag{1}
\end{align*}
$$

Notice that

$$
\log \left(1+\frac{1}{2 \phi}\right)+\log \left(1-\frac{\phi}{2}\right)=\log \left(1+\frac{1}{2 \phi}\right)\left(1-\frac{\phi}{2}\right)=\log \left(\frac{1}{4}\right)=-2 \log (2)
$$

and

$$
\log \left(1+\frac{1}{2 \phi}\right)-\log \left(1-\frac{\phi}{2}\right)=\log \left(\frac{1+1 / 2 \phi}{1-\phi / 2}\right)=\log \left(\phi^{4}\right)=4 \log (\phi) .
$$

From (1) we consequently find

$$
\sum_{n=1}^{\infty} \frac{T_{n} H_{n} F_{n}}{2^{n}}=73+52 \log (2)+\frac{232}{\sqrt{5}} \log (\phi),
$$

as desired.
Also solved by Narendra Bhandari, Bajura, Nepal; Brian Bradie,Christopher Newport U.; Bruce Burdick, Providence, RI; Nandan Sai Dasireddy, Hyderabad, Telangana, India; Russ Gordon, Whitman C.; Eugene Herman, Grinnell C.; Walther Janous, Ursulinengymnasium, Innsbruck, Austria; Volkhard Schindler, Berlin, Germany; Albert Stadler, Herrliberg, Switzerland; Enrique Treviño, Lake Forest C.; and the proposer.

A sum of a product of sums

1207. Ovidiu Furdui and Alina Sintămărian, Technical University of Cluj-Napoca, Cluj-Napoca, Romania.

Establish the following:

$$
\sum_{n=1}^{\infty}(2 n-1)\left(\sum_{k=n}^{\infty} \frac{1}{k^{2}}\right)\left(\sum_{k=n}^{\infty} \frac{1}{k^{3}}\right)=\zeta(2)+\zeta(3),
$$

where for a positive integer k, we have $\zeta(k)=\sum_{n=1}^{\infty} \frac{1}{n^{k}}$.
Solution by Brian Bradie, Christopher Newport University, Newport News, Virginia.
First, write

$$
\left(\sum_{k=n}^{\infty} \frac{1}{k^{2}}\right)\left(\sum_{k=n}^{\infty} \frac{1}{k^{3}}\right)=\sum_{j=n}^{\infty} \frac{1}{j^{2}} \sum_{\ell=j}^{\infty} \frac{1}{\ell^{3}}+\sum_{j=n}^{\infty} \frac{1}{j^{3}} \sum_{\ell=j+1}^{\infty} \frac{1}{\ell^{2}} .
$$

Next,

$$
\begin{aligned}
\sum_{n=1}^{\infty}(2 n-1) \sum_{j=n}^{\infty} \frac{1}{j^{2}} \sum_{\ell=j}^{\infty} \frac{1}{\ell^{3}} & =\sum_{j=1}^{\infty} \frac{1}{j^{2}} \sum_{n=1}^{j}(2 n-1) \sum_{\ell=j}^{\infty} \frac{1}{\ell^{3}}=\sum_{j=1}^{\infty} \sum_{\ell=j}^{\infty} \frac{1}{\ell^{3}} \\
& =\sum_{\ell=1}^{\infty} \frac{1}{\ell^{3}} \sum_{j=1}^{\ell} 1=\sum_{\ell=1}^{\infty} \frac{1}{\ell^{2}}=\zeta(2),
\end{aligned}
$$

and

$$
\begin{aligned}
\sum_{n=1}^{\infty}(2 n-1) \sum_{j=n}^{\infty} \frac{1}{j^{3}} \sum_{\ell=j+1}^{\infty} \frac{1}{\ell^{2}} & =\sum_{j=1}^{\infty} \frac{1}{j^{3}} \sum_{n=1}^{j}(2 n-1) \sum_{\ell=j+1}^{\infty} \frac{1}{\ell^{2}}=\sum_{j=1}^{\infty} \frac{1}{j} \sum_{\ell=j+1}^{\infty} \frac{1}{\ell^{2}} \\
& =\sum_{\ell=2}^{\infty} \frac{1}{\ell^{2}} \sum_{j=1}^{\ell-1} \frac{1}{j}=\sum_{\ell=2}^{\infty} \frac{H_{\ell}-\frac{1}{\ell}}{\ell^{2}}=\sum_{\ell=1}^{\infty} \frac{H_{\ell}}{\ell^{2}}-\sum_{\ell=1}^{\infty} \frac{1}{\ell^{3}} \\
& =2 \zeta(3)-\zeta(3)=\zeta(3),
\end{aligned}
$$

where $H_{n}=\sum_{j=1}^{n} \frac{1}{j}$ denotes the nth harmonic number, and we have used the wellknown identity

$$
\sum_{\ell=1}^{\infty} \frac{H_{\ell}}{\ell^{2}}=2 \zeta(3)
$$

Finally,

$$
\sum_{n=1}^{\infty}(2 n-1)\left(\sum_{k=n}^{\infty} \frac{1}{k^{2}}\right)\left(\sum_{k=n}^{\infty} \frac{1}{k^{3}}\right)=\zeta(2)+\zeta(3)
$$

Also solved by Narendra Bhandari, Bajura, Nepal; Paul Bracken, U. of Texas, Edinburgh; Bruce Burdick, Providence, RI; Hongwei Chen, Christopher Newport U.; Eugene Herman, Grinnell C.; Walther Janous, Ursulinengymnasium, Innsbruck, Austria; Kee-Wai Lau, Hong Kong, China; Shing Hin Jimmy Pak; Seán Stewart, King Abdullay U. of Sci. and Tech., Thuwal, Saudi Arabia; and the proposer.

An integral of logarithms

1208. Proposed by Marián S̆tofka, Slovak University of Technology, Bratislava, Slovakia.
Prove that

$$
\int_{0}^{1} \frac{\ln (1-x) \ln (1+x)}{x} d x=-\frac{5}{8} \zeta(3),
$$

where as above, for a positive integer k, we have $\zeta(k)=\sum_{n=1}^{\infty} \frac{1}{n^{k}}$.
Solution by Didier Pinchon, Toulouse, France.
Let I be the integral to evaluate. Using identity

$$
\begin{aligned}
\ln (1-x) \ln (1+x) & =\frac{1}{4}\left[(\ln (1-x)+\ln (1+x))^{2}-(\ln (1-x)-\ln (1+x))^{2}\right] \\
& =\frac{1}{4}\left[\ln ^{2}\left(1-x^{2}\right)-\ln ^{2}\left(\frac{1-x}{1+x}\right)\right],
\end{aligned}
$$

it follows that $I=\left(I_{1}-I_{2}\right) / 4$, with

$$
I_{1}=\int_{0}^{1} \frac{\ln ^{2}\left(1-x^{2}\right)}{x} d x, \quad I_{2}=\int_{0}^{1} \frac{\ln ^{2}\left(\frac{1-x}{1+x}\right)}{x} d x
$$

The substitutions $x=\sqrt{u}$ in I_{1} and $x=(1-u) /(1+u)$ in I_{2} give

$$
I_{1}=\frac{1}{2} \int_{0}^{1} \int_{0}^{1} \frac{\ln ^{2}(u)}{1-u} d u, \quad I_{2}=2 \int_{0}^{1} \int_{0}^{1} \frac{\ln ^{2}(u)}{1-u^{2}} d u .
$$

The dominated convergence theorem allows to permute the series expansion of $1 /(1-$ $u)\left(\right.$ resp. $\left.1 /\left(1-u^{2}\right)\right)$ with the integration in I_{1} (resp. I_{2}), and therefore

$$
I_{1}=\frac{1}{2} \sum_{n \geq 0} \int_{0}^{1} \ln ^{2}(u) u^{n} d u, \quad I_{2}=2 \sum_{n \geq 0} \int_{0}^{1} \ln ^{2}(u) u^{2 n} d u .
$$

For any nonnegative integer k, two successive integrations by parts provide the result

$$
\int_{0}^{1} \ln ^{2}(u) u^{n} d u=\frac{2}{(n+1)^{3}},
$$

and it follows that

$$
\begin{gathered}
I_{1}=\sum_{n \geq 0} \frac{1}{(n+1)^{3}}=\zeta(3), \\
I_{2}=4 \sum_{n \geq 0} \frac{1}{(2 n+1)^{3}}=4\left[\sum_{n \geq 0} \frac{1}{(n+1)^{3}}-\sum_{n \geq 0} \frac{1}{(2 n+2)^{3}}\right]=\frac{7}{2} \zeta(3) .
\end{gathered}
$$

In conclusion, $I=\frac{1}{4}\left(I_{1}-I_{2}\right)=-\frac{5}{8} \zeta(3)$.

Several solvers pointed out that this problem, by a different proposer, appeared as problem 12256 in The American Mathematical Monthly.

Also solved by F. R. Ataev, Uzbekistan; Khristo Boyadzhiev, Ohio Northern U.; Brian Bradie,Christopher Newport U.; Bruce Burdick, Providence, RI; Hongwei Chen, Christopher Newport U.; Kyle Gatesman (student), Johns Hopkins U.; Subhankar Gayen, West Bengal, India; Walther Janous, Ursulinengymnasium, Innsbruck, Austria; Moubinool Omarjee, Lycée Henri IV, Paris, France; Henry Ricardo, Westchester Area Math Circle; Albert Stadler, Herrliberg, Switzerland; Seán Stewart, King Abdullay U. of Sci. and Tech., Thuwal, Saudi Arabia; Michael Vowe, Therwil, Switzerland; and the proposer. One incomplete solution was received.

The rank of a matrix

1209. Proposed by George Stoica, Saint John, New Brunswick, Canada.

For non-negative integers i and j, define

$$
a_{i j}:= \begin{cases}i(i-1) \cdots(i-j+1) & \text { if } 1 \leq j \leq i \\ 1 & \text { if } i=0 \text { and } j \geq 0, \text { or } j=0 \text { and } i \geq 0, \text { and } \\ 0 & \text { if } j>i \geq 1\end{cases}
$$

Now let m be a positive integer. Prove that every $m \times m$ submatrix of the infinite matrix $\left(a_{2 i, j}\right)$ with $0 \leq j \leq m-1$ and $i \geq 0$ has rank m and, in addition, that $\sum_{i=0}^{m}(-1)^{i}\binom{m}{i} a_{2 k+2 i, j}=0$ for $0 \leq j \leq m-1$ and any $k \in \mathbb{N}$.

Solution by the proposer.

Introduce the polynomials

$$
f_{0}(x)=1, f_{1}(x)=x, f_{2}(x)=x(x-1), \ldots, f_{j}(x)=x(x-1) \cdots(x-j+1) .
$$

Then $a_{2 i, j}=f_{j}(2 i)$. Since for any j

$$
x^{j}=f_{j}(x)+\sum_{n=0}^{j-1} c_{n} f_{n}(x)
$$

for some constants c_{n}, it is clear that any matrix of the form

$$
\left(f_{j}\left(x_{i}\right)\right) \text { with } 0 \leq j, i \leq m-1, \text { and where all } x_{i} \text { are distinct, }
$$

can be transformed into a Vandermonde matrix by elementary row operations, so its determinant must be different from zero.

For the second statement, start by observing that the identity

$$
\sum_{i=0}^{m}(-1)^{i}\binom{m}{i} f(i)=0
$$

must be valid whenever $f(x)$ is a polynomial of degree at most $m-1$. Indeed, let us define $\Delta(f(x))=f(x)-f(x+1)$, and note that

$$
\sum_{i=0}^{m}(-1)^{i}\binom{m}{i} f(i)=\Delta^{m}(f(x))(0)
$$

The difference operator decreases the degree of the polynomial, and the equation can be proved inductively, using Pascal's identity.

As we saw above, the function $i \rightarrow a_{2 i, j}$ is a polynomial of degree j. Hence

$$
\sum_{i=0}^{m}(-1)^{i}\binom{m}{i} a_{2 k+2 i, j}=0 \text { for } 0 \leq j \leq m-1
$$

This completes the solution.
No other solutions were received.

The existence of a countable commutative integral domain with a sum-free collection of ideals

1210. Proposed by Greg Oman, University of Colorado at Colorado Springs, Colorado Springs, CO.
Let R be a commutative ring with identity, and let I and J be ideals of R. Recall that the sum of I and J is the ideal defined by $I+J:=\{i+j: i \in I, j \in J\}$. Prove or disprove: there exists a countable commutative integral domain D with identity and a collection \mathcal{S} of $2^{\aleph_{0}}$ ideals of D such that for all $I \neq J$ in \mathcal{S}, we have $I+J \notin \mathcal{S}$.

Solution by Anthony Bevelacqua, University of North Dakota.

Let $D=\mathbb{Z}\left[x_{1}, x_{2}, \ldots\right]$ be the polynomial ring in countably many indeterminates with coefficients in \mathbb{Z}. Since D is the countable union of the countable $\mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$ for each $n \in \mathbb{N}, D$ is a countable commutative integral domain with identity.

For any $A \subseteq \mathbb{N}$ let I_{A} be the ideal of D generated by $\left\{x_{i} \mid i \in A\right\}$. For all $A, B \subseteq \mathbb{N}$ we have (i) $I_{A}=I_{B}$ if and only if $A=B$ and (ii) $I_{A}+I_{B}=I_{A \cup B}$. Thus it suffices to find a collection S of $2^{\aleph_{0}}$ subsets of \mathbb{N} such that for all $A \neq B$ in S we have $A \cup B \notin S$.

It's well-known (see below for sketch of proof) that for any countable set X there exists a collection T of $2^{\aleph_{0}}$ subsets of X such that each $U \in T$ is infinite and for all $U \neq V$ in T we have $U \cap V$ is finite. Since each element of T is an infinite set, $U \cap V \notin T$. So there exists T a family of $2^{\aleph_{0}}$ subsets of \mathbb{N} such that for all $U \neq V$ in T we have $U \cap V \notin T$. Now $S=\{\mathbb{N}-U \mid U \in T\}$ has the desired properties: S is a family of $2^{\aleph_{0}}$ subsets of \mathbb{N} such that for all $A \neq B$ in S we have $A \cup B \notin S$.

Thus $D=\mathbb{Z}\left[x_{1}, x_{2}, \ldots\right]$ is a countable commutative integral domain with identity containing a collection $\mathcal{S}=\left\{I_{A} \mid A \in S\right\}$ of $2^{N_{0}}$ ideals such that for all $I \neq J$ in S we have $I+J \notin \mathcal{S}$.

Sketch of a standard proof of above claim: Without loss of generality we can suppose $X=\mathbb{Q}$. There are $2^{\aleph_{0}}$ real irrational numbers. For each real irrational r let $\left(u_{n}\right)_{n=1}^{\infty}$ be a sequence of rational numbers converging to r, and let $U_{r}=\left\{u_{n} \mid n \in \mathbb{N}\right\}$. Each U_{r} is infinite and $U_{r} \cap U_{s}$ is finite for any distinct real irrationals r and s.

Also solved by Northwestern U. Math Problem Solving Group; and the proposer.
Correction: In the featured solution to problem 1195 in the January 2022 issue, two numerators were missing in the second line. The second line as provided by the solver should have been

$$
\sum_{n=1}^{\infty} \sum_{k=n+2}^{\infty} \frac{h_{n}}{(n+1) k^{2}}=\sum_{n=1}^{\infty} \sum_{k=1}^{\infty} \frac{h_{n}}{(n+1)(n+k+1)^{2}}
$$

The editor apologizes for the error.

[^0]: doi.org/10.1080/07468342.2022.2100155

