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PROBLEMS AND SOLUTIONS

Edited by Daniel H. Ullman, Daniel J. Velleman,
Stan Wagon, and Douglas B. West

with the collaboration of Paul Bracken, Ezra A. Brown, Hongwei Chen, Zachary Franco,
George Gilbert, László Lipták, Rick Luttmann, Hosam Mahmoud, Frank B. Miles, Lenhard
Ng, Rajesh Pereira, Kenneth Stolarsky, Richard Stong, Lawrence Washington, and Li Zhou.

Proposed problems, solutions, and classics should be submitted online at
americanmathematicalmonthly.submittable.com/submit.

Proposed problems must not be under consideration concurrently at any other jour-
nal, nor should they be posted to the internet before the deadline date for solutions.
Proposed solutions to the problems below must be submitted by May 31, 2023. Pro-
posed classics should include the problem statement, solution, and references. More
detailed instructions are available online. An asterisk (*) after the number of a prob-
lem or a part of a problem indicates that no solution is currently available.

PROBLEMS

12363. Proposed by Donald E. Knuth, Stanford University, Stanford, CA. A knight’s path
on an n-by-n chessboard is a sequence of distinct integer pairs (x1, y1), . . . , (xt , yt ) such
that 1 ≤ xk, yk ≤ n for 1 ≤ k ≤ t and {|xk+1 − xk| , |yk+1 − yk|} = {1, 2} for 1 ≤ k < t .
(a) For each n ≥ 1, how many cells can be covered by such a path, when the knight is
restricted to cells (x, y) for which x ≡ y (mod 3)?
(b) Same question as (a), but with x ≡ y − 1 (mod 3)?

12364. Proposed by Roberto Tauraso, Tor Vergata University of Rome, Rome, Italy. Let n

be a positive integer, and let z be a complex number not in {−1, . . . ,−n}. Prove

∑
1≤j≤k≤n

(−1)k−1

(z + j)k2

(
z + n

n − k

)
=
(

z + n

n

) ∑
1≤j≤k≤n

1

(z + j)2k
.

where
(
α

k

) = (1/k!)
∏k−1

i=0 (α − i).

12365. Proposed by Joe Buhler, Reed College, Portland, OR, and George Stoica, Saint
John, New Brunswick, Canada. For positive integers a, b, and c, let sk = ak + bk + ck

for every positive integer k. It is easy to check that if (a, b, c) = (1, 1, 1) or (a, b, c) =
(1, 1, 4), then sk is divisible by s1 for all k.
(a) Show that if s1 divides each of sj , sj+1, and sj+2 for some positive integer j , then s1

also divides sk for all k > j + 2.
(b) For k > 1, call a triple (a, b, c) good for k if a, b, and c have no common factor greater
than 1 and if s1 divides both sk and sk+1. Show that (1, 1, 1) and (permutations of) (1, 1, 4)

are the only triples that are good for k = 2 and also are the only triples that are good for
k = 3.
(c) Show that if k ≡ 1 (mod 3), then there are infinitely many triples that are good for k.
(d) Show that there are infinitely many values of k for which the number of good triples is
finite.
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12366. Proposed by Vasile Cı̂rtoaje, Petroleum-Gas University of Ploieşti, Ploieşti, Roma-
nia. (a) Find the infimum of

1

ab + 5
+ 1

bc + 5
+ 1

cd + 5
+ 1

da + 5
(∗)

over all nonnegative real numbers a, b, c, and d such that ab+ac+ad+bc+bd+cd=6.
(b) Find the infimum of (∗) subject to the additional requirement that a ≥ b ≥ c ≥ d.

12367. Proposed by Paolo Perfetti, Tor Vergata University of Rome, Rome, Italy. Evaluate

∞∑
k=0

(k + 1)

∫ (2k+3)π

(2k+1)π

sin(px)

x2 + a2
dx,

where p and a are real numbers with −1 < p < 1 and a > 0.

12368. Proposed by Cristian Chiser, Elena Cuza College, Craiova, Romania. According to
problem A3 in the 1970 Putnam Competition, no perfect square can have a decimal repre-
sentation ending in 4444. There are, however, perfect squares with a decimal representation
ending in 444. For n ≥ 4, how many perfect squares k have a decimal representation that
consists of n digits ending in 444?

12369. Proposed by Tran Quang Hung, Hanoi, Vietnam. Let S be the simplex in n-
dimensional Euclidean space with vertices A0, . . . , An. Let Hi be the hyperplane contain-
ing the vertices of S other than Ai , and let G be the centroid of S. Let P be any point not
in any Hi , and let Pi be the point in Hi such that PPi is parallel to GAi . Prove that the
centroid of the simplex with vertices P0, . . . , Pn lies on the line segment PG.

SOLUTIONS

Golden Eigenvalues of Special Matrices

12240 [2021, 276]. Proposed by Yue Liu, Fuzhou University, Fuzhou, China, and Fuzhen
Zhang, Nova Southeastern University, Fort Lauderdale, FL. We denote by A∗ the conjugate
transpose of the matrix A.
(a) Let x ∈ C

m be a unit column vector. Find the eigenvalues of the (m + 1)-by-(m + 1)

matrices [
x∗x x∗
x 0

]
and

[
xx∗ x

x∗ 0

]
.

(b) More generally, let X be an m-by-n complex matrix, and let ρ be any real number. Find
the eigenvalues of the (m + n)-by-(m + n) matrices[

X∗X X∗
X ρIm

]
and

[
XX∗ X

X∗ ρIn

]
.

Solution to part (a) by Jean-Pierre Grivaux, Paris, France. Let M and N be the two spec-
ified matrices. Since x is a unit vector, x∗x = 1. The rank of M is two. Thus it has two
nonzero eigenvalues λ1 and λ2, plus 0 with multiplicity m − 1. Note λ1 + λ2 = tr(M) = 1.
We calculate M2:

M2 =
[

2 x∗
x xx∗

]
.
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With the entries of x indexed as x1, . . . , xm, the m-by-m matrix xx∗ has diagonal entries
|x1|2 , . . . , |xm|2. Thus tr(M2) = 2 + ∑ |xi |2 = 3, so λ2

1 + λ2
2 = 3. Substituting λ2 =

1 − λ1 yields a quadratic equation, and we obtain {λ1, λ2} = {(1 − √
5)/2, (1 + √

5)/2}.
The argument for N is similar; it also has rank 2 and trace 1. Now

N2 =
[

2xx∗ xx∗x
x∗xx∗ 1

]
,

so tr(N2) = 3. Again the two nonzero eigenvalues are (1 − √
5)/2 and (1 + √

5)/2.

Solution to part (b) by Kuldeep Sarma, Tezpur University, Tezpur, India. Again let M and N

be the two specified matrices. We use the singular value decomposition (SVD). The SVD
factors the m-by-n complex matrix X as U�V ∗, where U is an m-by-m complex unitary
matrix, V is an n-by-n complex unitary matrix, and � is an m-by-n rectangular diagonal
matrix with nonnegative real numbers σ1, . . . , σs on the diagonal, where s = min{m, n}.
We can then write

M =
[
V �∗�V ∗ V �∗U ∗
U�V ∗ U [ρIm]U ∗

]
=
[
V 0
0 U

] [
�∗� �∗
� ρIm

] [
V ∗ 0
0 U ∗

]
.

Since multiplication by a unitary matrix does not change eigenvalues, it suffices to find the
eigenvalues of the matrix S given by

S =
[
�∗� �∗
� ρIm

]
.

We consider a simultaneous permutation of the rows and columns of S, which does not
change the eigenvalues. Since � is nonzero only on its diagonal, many entries in S are
0. Index the first n rows (and columns) of S as 1 through n, and index the last m rows
(and columns) as 1′ through m′. Let s = min{m, n}. Reorder the rows (and columns) in the
order (1, 1′, 2, 2′, . . . , s, s ′), followed by the remaining m + n − 2s rows (and columns) in
their original order. This converts S to a block-diagonal matrix S ′ in which the ith block,
for 1 ≤ i ≤ s, is the 2-by-2 matrix [

σ 2
i σi

σi ρ

]
,

and the final m + n − 2s blocks are 1-by-1 blocks that are all [ρ] if m > n and are all [0] if
m < n (there are none of these 1-by-1 blocks if m = n). Note that m + n − 2s = |m − n|.

The eigenvalues are the eigenvalues of the blocks: 0 or ρ with the stated multiplicity
|m − n|, plus

ρ + σ 2
i ±

√(
ρ − σ 2

i

)2 + 4σ 2
i

2

from the block for σi , where 1 ≤ i ≤ s. Note that if σi = 0, then the block for σi reduces
to two extra 1-by-1 blocks [0] and [ρ], but this is in fact described by the formula given
above for the eigenvalues of the block for σi .

The matrix N is generated in the same way as the matrix M , using X∗ instead of X.
It follows that the spectrum of N is the same as the spectrum of M , except that the mul-
tiplicities of 0 and ρ generated by the 1-by-1 blocks are, respectively, max{m − n, 0} and
max{n − m, 0}, obtained by interchanging the roles of m and n.

Also solved by D. Fleischman, K. Gatesman, L. Han (US) & X. Tang (China), E. A. Herman, C. P. A. Kumar
(India), O. P. Lossers (Netherlands), A. Stadler (Switzerland), R. Stong, E. I. Verriest, T. Wiandt, and the
proposer.
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An Integral Limit for This Year—Or, As It Turns Out, Any Year

12242 [2021, 277]. Proposed by Elena Corobea, Technical College Carol I, Constanţa,
Romania. For n ≥ 1, let

In =
∫ 1

0

(∑n
k=0 xk/(2k + 1)

)2022

(∑n+1
k=0 xk/(2k + 1)

)2021 dx.

Let L = limn→∞ In. Compute L and limn→∞ n(In − L).

Solution by Kyle Gatesman (student), Johns Hopkins University, Baltimore, MD. We show
that L = 2 ln 2 and limn→∞ n(In − L) = −1/2.

For integers n ≥ 1 and p ≥ 0, let

Sn(x) =
n∑

k=0

xk

2k + 1
and In(p) =

∫ 1

0

(Sn(x))p+1

(Sn+1(x))p
dx.

For p ≥ 1,

In(p) =
∫ 1

0

(Sn(x))p

(Sn+1(x))p−1
· Sn(x)

Sn+1(x)
dx

=
∫ 1

0

(Sn(x))p

(Sn+1(x))p−1
·
(

1 − xn+1

(2n + 3)Sn+1(x)

)
dx

= In(p − 1) −
∫ 1

0

(
Sn(x)

Sn+1(x)

)p

· xn+1

2n + 3
dx.

For x ∈ [0, 1], we have

0 ≤
(

Sn(x)

Sn+1(x)

)p

· xn+1

2n + 3
≤ xn+1

2n + 3
,

so

0 ≤ In(p − 1) − In(p) ≤
∫ 1

0

xn+1

2n + 3
dx = 1

(n + 2)(2n + 3)
.

Therefore limn→∞(In(p − 1) − In(p)) = 0, and by a straightforward induction on p we
conclude that limn→∞(In(0) − In(p)) = 0 for all p ∈ Z

+. Moreover, for any constant
c ∈ R,

0 ≤ n(In(p − 1) − c) − n(In(p) − c) ≤ n

(n + 2)(2n + 3)
,

and so lim
n→∞(n(In(p − 1) − c) − n(In(p) − c)) = lim

n→∞(n(In(0) − c) − n(In(p) − c)) = 0.

Because

In(0) =
∫ 1

0
Sn(x) dx =

∫ 1

0

n∑
k=0

xk

2k + 1
dx =

n∑
k=0

1

(k + 1)(2k + 1)
,

we conclude

lim
n→∞In(p) = lim

n→∞ In(0) = lim
n→∞

n∑
k=0

1

(k + 1)(2k + 1)
=

∞∑
k=0

1

(k + 1)(2k + 1)

= 2
∞∑

k=0

1

(2k + 2)(2k + 1)
= 2

∞∑
k=0

(
1

2k + 1
− 1

2k + 2

)
= 2

∞∑
k=1

(−1)k−1

k
= 2 ln 2.
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In particular, in the case p = 2021, we obtain L = 2 ln 2.
Similarly, observe that

lim
n→∞ n(In(p) − L) = lim

n→∞ n(In(0) − L)

= lim
n→∞ n

(
n∑

k=0

1

(k + 1)(2k + 1)
−

∞∑
k=0

1

(k + 1)(2k + 1)

)

= lim
n→∞ n

(
−

∞∑
k=n+1

1

(k + 1)(2k + 1)

)
.

For every n ∈ Z
+ we have

∞∑
k=n+1

1

(k + 1)(2k + 4)
≤

∞∑
k=n+1

1

(k + 1)(2k + 1)
≤

∞∑
k=n+1

1

(k + 1)2k
.

Since
∞∑

k=n+1

1

(k + 1)(2k + 4)
= 1

2

∞∑
k=n+1

(
1

k + 1
− 1

k + 2

)
= 1

2(n + 2)

and
∞∑

k=n+1

1

(k + 1)2k
= 1

2

∞∑
k=n+1

(
1

k
− 1

k + 1

)
= 1

2(n + 1)
,

we conclude

− n

2(n + 1)
≤ n

(
−

∞∑
k=n+1

1

(k + 1)(2k + 1)

)
≤ − n

2(n + 2)
.

Thus, by the squeeze theorem,

lim
n→∞ n(In(p) − L) = lim

n→∞ n

(
−

∞∑
k=n+1

1

(k + 1)(2k + 1)

)
= −1

2
,

and setting p = 2021 completes the solution of the stated problem.

Editorial comment. The solution shows that the answers are the same if 2021 and 2022 are
replaced by p and p + 1 for any nonnegative integer p. Indeed, since In(p) is a decreasing
function of p, the answers are the same if 2021 and 2022 are replaced by x and x + 1 for
any nonnegative real number x.

Also solved by K. F. Andersen (Canada), P. Bracken, H. Chen, G. Fera (Italy), D. Fleischman, L. Han (USA)
& X. Tang (China), E. A. Herman, N. Hodges (UK), J. H. Lindsey II, O. P. Lossers (Netherlands), M. Omarjee
(France), K. Sarma (India), A. Stadler (Switzerland), R. Stong, R. Tauraso (Italy), T. Wiandt, J. Yan (China),
and the proposer.

A Hyperbolic Integral

12243 [2021, 277]. Proposed by M. L. Glasser, Clarkson University, Potsdam, NY. For
a > 0, evaluate ∫ a

0

t

sinh t
√

1 − csch2a · sinh2 t
dt.

Solution by Kuldeep Sarma, Tezpur University, Tezpur, India. Let I (a) be the desired value.
First, we observe that

1 − csch2a sinh2 t = cosh2 t (1 − coth2 a tanh2 t).

PROBLEMS AND SOLUTIONS 5



Using this, we obtain

I (a) =
∫ a

0

t dt

sinh t
√

1 − csch2a · sinh2 t
=
∫ a

0

t dt

sinh t cosh t
√

1 − coth2a · tanh2 t
.

Now using the substitution cos x = coth a tanh t , we have

I (a) =
∫ π/2

0

tanh−1(tanh a cos x)

cos x
dx

and hence

I ′(a) =
∫ π/2

0

sech2a

1 − tanh2 a cos2 x
dx = sech a tan−1(cosh a tan x)

∣∣π/2

0 = π

2
sech a.

Thus

I (a) =
∫ a

0
I ′(s) ds = π

2

∫ a

0
sech s ds = π

2
tan−1(sinh a).

Editorial comment. Several solvers noted that the requested integral can be reduced to
integral (3.535) from I. S. Gradshteyn, I. M. Ryzhik, et al. (2014), Table of Integrals, Series,
and Products, 8th edition, Cambridge, MA: Academic Press.

Also solved by U. Abel & V. Kushnirevych (Germany), P. Bracken, H. Chen, G. Fera (Italy), L. Han (US) &
X. Tang (China), N. Hodges (UK), O. P. Lossers (Netherlands), T. M. Mazzoli (Austria), M. Omarjee (France),
A. Stadler (Switzerland), S. M. Stewart (Saudi Arabia), R. Tauraso (Italy), UM6P Math Club (Morocco), and
the proposer.

Equitable Polyominos in a Box

12244 [2021, 376]. Proposed by Rob Pratt, SAS Institute Inc., Cary, NC, Stan Wagon,
Macalester College, St. Paul, MN, Douglas B. West, University of Illinois, Urbana, IL,
and Piotr Zielinski, Cambridge, MA. A polyomino is a region in the plane with connected
interior that is the union of a finite number of squares from a grid of unit squares. For which
integers k and n with 4 ≤ k ≤ n does there exist a polyomino P contained entirely within
an n-by-n grid such that P contains exactly k unit squares in every row and every column
of the grid? Clearly such polyominos do not exist when k = 1 and n ≥ 2. Nikolai Beluhov
noticed that they do not exist when k = 2 and n ≥ 3, and his Problem 12137 [2019, 756;
2021, 381] shows that they do not exist when k = 3 and n ≥ 5.

Solution by Jacob Boswell, Missouri Southern State University, Joplin, MO. Polyominos
with the desired properties, which we call (k, n)-equitable polyominos, exist whenever
4 ≤ k ≤ n.

Denote the n-by-n grid by Gn. We call its unit squares cells and specify their positions in
matrix notation. We call the three cells (1,1), (1,2), and (2,1) the top left guard. Similarly,
we define top right, bottom left, and bottom right guards.

We argue by induction on k that in Gn there is a (k, n)-equitable polynomino that con-
tains two diagonally opposite guards such that removing the corner square from one of
those guards leaves the remainder connected. Let Ck,n denote the class of such polyomi-
nos. We postpone the discussion of the base cases.

For the induction step, consider (k, n) with n ≥ k ≥ 9. Cover Gn using two diagonally
opposite copies of G�n/2 and two diagonally opposite copies of G�n/2�. When n is odd, the
two larger subgrids share one cell in the center, but other than that the subgrids share no
cells.

We describe a uniform construction for all cases except when n is odd and k is even. In
the two opposite copies of G�n/2, place members of C�k/2,�n/2, with one of the guards that
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are inductively guaranteed to exist placed in the center of Gn. In the two opposite copies of
G�n/2�, similarly place members of C�k/2�,�n/2� with their guaranteed guards in the center of
Gn.

When n is odd and k is even, use members of Ck/2+1,�n/2 in the larger subgrids and
Ck/2−1,�n/2� in the smaller subgrids, and (in this case) delete the central cell from the result-
ing polyomino. The use of Ck/2−1,�n/2� here is the reason we need k = 8 in the basis.

In each case, the guards from each subpolyomino retain a cell adjacent to a cell retained
from the guard in a neighboring subpolyomino, so the resulting full polyomino is con-
nected. The polyomino also retains diagonally opposite complete guards, and deleting the
corner cell from one of those guards does not disconnect the polyomino, because it does
not disconnect the subpolyomino (even when the central cell is deleted, the two neighbors
of the central cell are connected through the other subpolyominos).

When n is even, the number of cells in each row and column of the final polyomino
is �k/2 + �k/2�. When n is odd and k is odd, the computation is the same except for
the central row and column, where it is �k/2 + �k/2 − 1 as desired, since the central
cell contributes only once. When n is odd and k is even, we have k/2 + 1 + k/2 − 1
cells in each noncentral row and column, and in the central row and column we have
k/2 + 1 + k/2 + 1 − 2 cells, since the central cell was deleted. (Keeping the larger subgrid
connected in this case is the reason for the special condition on the subgrid.) Below we
show the construction of a member of C10,12 from four members of C5,6.

Now we return to the base cases. Because the induction step for k needs the induction
hypothesis for �(k − 1)/2� and (k, n)-equitable polyominos do not generally exist when
k ≤ 3, we need base cases for 4 ≤ k ≤ 8. Below we show members of C4,5 and C4,12. The
general construction shown for (k, n) = (4, 12) is valid when n ≥ 6, which completes the
proof for k = 4.

PROBLEMS AND SOLUTIONS 7



For k ≥ 5, we show first that a special construction for n = 2k + 2 yields constructions
for all larger n. Say that a member of Ck,2k+2 is a butterfly if its portion in the upper left and
lower right quadrants consists precisely of triangular arrays of cells with side-length �k/2�
touching the center of G2k+2, as indicated on the left below. Suppose that Ck,2k+2 contains a
butterfly Bk . Note that the polyomino A′ in the upper right quadrant of Bk can be assumed
to be the transpose of A.

From Bk one can obtain a member of Ck,n whenever n > 2k + 2 by enlarging the central
portion of the butterfly and spreading A and A′ farther apart, as shown on the right below.
When k is even, the central diagonal of the added portion is omitted, but when k is odd it
is present. The correct counts in the rows and columns occupied by A and A′ are inherited
from Bk .

Below we show butterflies for 5 ≤ k ≤ 8. One issue in these constructions is ensuring
that the polyomino is connected; this is the reason we provided a different construction for
k = 4.

8 c© THE MATHEMATICAL ASSOCIATION OF AMERICA



At this point the proof is completed by exhibiting explicit examples for k ≤ n ≤ 2k + 1
when 5 ≤ k ≤ 8. General constructions for n = k and n = k + 1 are trivial. What remains
is a finite problem, exhibiting 26 polynominos. We leave the constructions to the reader.

Editorial comment. The constructions are far from unique. For example, there is a con-
struction similar to the butterfly that exists when n = 2k and expands like the butterfly,
reducing the finite problem to 18 polyominos.

Also solved by K. Gatesman, R. Stong, and the proposer.

CLASSICS

C11. Suggested by Richard Stanley, University of Miami, Coral Gables, FL. A standard
deck of cards has 26 red cards and 26 black cards. Deal out the cards in a shuffled standard
deck, one card at a time. At any point before the last card is dealt, you can guess that the
next card is red. For example, you may guess that the very first card is red, and your guess
will be correct with probability 1/2. Or you may watch some cards go by, noting their color
in order to decide when to guess. What strategy maximizes the probability that your guess
is correct?

Repetitions in the Interior of Pascal’s Triangle

C10. Due to Douglas Lind, suggested by the editors. Show that there are infinitely many
numbers that appear at least six times in Pascal’s triangle.

Solution. For m ≥ 3, m occurs twice as
(
m

1

)
and

(
m

m−1

)
. By symmetry, it will suffice to

find infinitely many values of m with at least two more occurrences in the left half of the
triangle.

There are several small examples of such pairs of occurrences: 120 = (10
3

) = (16
2

)
,

210 = (10
4

) = (21
2

)
, 1540 = (22

3

) = (56
2

)
, and 3003 = (15

5

) = (14
6

)
. The last of these exhibits

the intriguing relationship
(
n

k

) = (
n−1
k+1

)
. To solve the problem, we will find infinitely many

solutions of this equation with k > 1 and k + 1 < (n − 1)/2.
The equation

(
n

k

) = (
n−1
k+1

)
is equivalent to n(k + 1) − (n − k)(n − k − 1) = 0. We claim

that for every positive integer j , this equation is satisfied by the values n = F2j+2F2j+3
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and k = F2jF2j+3, where Fi is the ith Fibonacci number. To see why, note that with these
values we have n − k = (F2j+2 − F2j )F2j+3 = F2j+1F2j+3, and therefore

n(k + 1) − (n − k)(n − k − 1) = F2j+2F2j+3(F2jF2j+3 + 1) − F2j+1F2j+3(F2j+1F2j+3 − 1)

= F2j+3(F2j+2F2jF2j+3 + F2j+2 − F 2
2j+1F2j+3 + F2j+1)

= F2j+3(F2j+2F2jF2j+3 − F 2
2j+1F2j+3 + F2j+3)

= F 2
2j+3(F2j+2F2j − F 2

2j+1 + 1) = 0,

where the last step uses the well-known identity Fi+1Fi−1 − F 2
i = (−1)i .

The case j = 1 yields n = 15 and k = 5, the example we found earlier. When j = 2 we
get n = 104 and k = 39, and indeed

(104
39

) = (103
40

) = 61218182743304701891431482520.

Editorial comments. The appearance of the Fibonacci numbers in this solution can be
explained by reference to classic problem C2 (this Monthly, Feb. 2022, p. 194). View-
ing the equation n(k + 1) − (n − k)(n − k − 1) = 0 as a quadratic in n and applying the
quadratic formula yields

n = 3k + 2 ± √
5k2 + 8k + 4

2
.

For n to be an integer, we need 5k2 + 8k + 4 to be a perfect square. Setting 5k2 + 8k + 4 = t2

and solving for k by the quadratic formula, we get

k = −4 ± √
5t2 − 4

5
.

For k to be an integer, 5t2 − 4 must be a perfect square, and the solution to classic problem
C2 (March 2022, pp. 293–294) shows that this happens if and only if t is an odd-indexed
Fibonacci number. Setting t = F2i+1 and applying Fibonacci identities leads to the values

n = Fi+1Fi+2 + (−1)i+1 − 1

5
, k = Fi−1Fi+2 + 4((−1)i+1 − 1)

5
.

These are integers when i is odd, and setting i = 2j + 1 leads to the values used in the
solution.

This result is due to Lind (D. Lind, The quadratic field Q(
√

5) and a certain Dio-
phantine equation, Fib. Quart. 6 (1968) 86–94, fq.math.ca/Scanned/6-3/lind.pdf). See also
C. A. Tovey, Multiple occurrences of binomial coefficients, Fib. Quart. 23 (1985) 356–358.
It is related to a 1971 conjecture of Singmaster (D. Singmaster, How often does an integer
occur as a binomial coefficient?, this Monthly 78 (1971) 385–386). For an integer m with
m ≥ 2, let Sm be the number of times m appears in Pascal’s triangle. Singmaster conjec-
tured that Sm is bounded, and suggested that 10 or 12 might be a bound. The problem shows
that 5 cannot be an asymptotic bound. It turns out that S3003 = 8; there are no other known
values of m for which Sm ≥ 8. The sequence of binomial coefficients for which Sm ≥ 6
starts 120, 210, 1540, 3003, 7140, 11628, 24310, 61218182743304701891431482520 (see
the OEIS sequences: oeis.org/A003015, oeis.org/A003016, and oeis.org/A090162). See
also K. Matomäki, M. Radziwiłł, X. Shao, T. Tao, and J. Teräväinen, Singmaster’s conjec-
ture in the interior of Pascal’s triangle, arxiv.org/abs/2106.03335.
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