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PROBLEMS AND SOLUTIONS

Edited by Daniel H. Ullman, Daniel J. Velleman,
Stan Wagon, and Douglas B. West

with the collaboration of Paul Bracken, Ezra A. Brown, Hongwei Chen, Zachary Franco,
George Gilbert, László Lipták, Rick Luttmann, Hosam Mahmoud, Frank B. Miles, Lenhard
Ng, Rajesh Pereira, Kenneth Stolarsky, Richard Stong, Lawrence Washington, and Li Zhou.

Proposed problems, solutions, and classics should be submitted online at
americanmathematicalmonthly.submittable.com/submit.

Proposed problems must not be under consideration concurrently at any other jour-
nal, nor should they be posted to the internet before the deadline date for solutions.
Proposed solutions to the problems below must be submitted by April 30, 2023. Pro-
posed classics should include the problem statement, solution, and references. More
detailed instructions are available online. An asterisk (*) after the number of a prob-
lem or a part of a problem indicates that no solution is currently available.

PROBLEMS

12356. Proposed by Ira Gessel, Brandeis University, Waltham, MA. Let A(z) = z3 − z2

and B(z) = 1 +∑∞
n=0

(−1)n

n+1

(3n+1
n

)
zn+1. Prove that B is a one-sided inverse to A in the

sense that A(B(z)) = z. Also, prove B(A(z)) = 1 − z2M(−z), where

M(z) = 1 − z − √
1 − 2z − 3z2

2z2
.

(The coefficients of M(z) are the Motzkin numbers 1, 1, 2, 4, 9, 21, . . . .)

12357. Proposed by Van Khea, Prey Veng, Cambodia, and Dan Ştefan Marinescu, Hune-
doara, Romania. Suppose that triangles ABC and DEF have the same centroid, where
D, E, and F are on the segments BC, CA, and AB, respectively. Let I be the incenter of
triangle ABC. Prove

AI

AD
+ BI

BE
+ CI

CF
≤ 2.

12358. Proposed by Gregory Galperin, Eastern Illinois University, Charleston, IL, and
Yury J. Ionin, Central Michigan University, Mount Pleasant, MI. For a positive integer q

and a set A of positive integers, say that A is q-good if every sufficiently large integer has
exactly q representations as the sum of distinct elements of A.
(a) Which sets A are 1-good?
(b) For which q does there exist a q-good set?
(c) For q as in (b), which sets A are q-good?

12359. Proposed by Paul Bracken, University of Texas, Edinburg, TX. Let n be a positive
integer. Prove

−1 − π

4n
− 1

8n2
<

n∑
k=1

1

(2k − 1)2
− 2

(
n∑

k=1

(−1)k+1

2k − 1

)2

<
−1 + π

4n
− 1

8n2
.
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12360. Proposed by D. M. Bătineţu-Giurgiu, Bucharest, Romania, and Neculai Stanciu,
Buzău, Romania. Evaluate

lim
n→∞

(n + 1)2

xn+1
− n2

xn

,

where xn = n
√√

2! 3
√

3! · · · n
√

n!.

12361. Proposed by Hideyuki Ohtsuka, Saitama, Japan. For a nonengative integer k, let
r3k = 0, r3k+1 = 1, and r3k+2 = −1. Prove

n−1∑
k=0

(
2k

k

)
=

n∑
k=0

rk

(
2n

n − k

)
,

for every positive integer n.

12362. Proposed by Antonio Garcia, Strasbourg, France. Evaluate

lim
n→∞

∫ π/2

0

n(√
2 cos x

)n +
(√

2 sin x
)n dx.

SOLUTIONS

Counting Sets Without Consecutive Elements

12233 [2021, 178]. Proposed by C. R. Pranesachar, Indian Institute of Science, Bengaluru,
India. Let n and k be positive integers with 1 ≤ k ≤ (n + 1)/2. For 1 ≤ r ≤ n, let h(r)

be the number of k-element subsets of {1, . . . , n} that do not contain consecutive elements
but that do contain r . For example, with n = 7 and k = 3, the string h(1), . . . , h(7) is
6, 3, 4, 4, 4, 3, 6. Prove
(a) h(r) = h(r + 1) when r ∈ {k, . . . , n − k}.
(b) h(k − 1) = h(k) ± 1.
(c) h(r) > h(r + 2) when r ∈ {1, . . . , k − 2} and r is odd.
(d) h(r) < h(r + 2) when r ∈ {1, . . . , k − 2} and r is even.

Composite solution by Kyle Gatesman, Johns Hopkins University, Baltimore, MD, and
Roberto Tauraso, University of Rome Tor Vergata, Rome, Italy. The problem statement
requires correction in parts (c) and (d), where in the special case k = (n + 1)/2 we have
h(r) = h(r + 2) for all r .

For a proof by induction, we make the dependence on n and k explicit. Let hn,k(r) =
h(r), and extend the definition to give 0 when n, k, or r is outside its natural domain. For
1 ≤ r ≤ n − 1, partition the k-element subsets containing r by whether they contain n,
obtaining

hn,k(r) = hn−1,k(r) + hn−2,k−1(r). (1)

Similarly, for 1 < r ≤ n, partition the k-element subsets containing r by whether they
contain 1. After shifting indices to start at 2 or 3, this yields

hn,k(r) = hn−1,k(r − 1) + hn−2,k−1(r − 2). (2)

(a) We use induction on n. Note that hn,1(r) = 1 for all r and n, from which (a) follows
for k = 1, including all cases with n ≤ 3. Now suppose n > 3 and k > 1. By symmetry,
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hn,k(r) = hn,k(n + 1 − r), so we need only consider k ≤ r ≤ (n − 1)/2. In that case,
r ≤ (n − 1) − k = (n − 2) − (k − 1). Now (1) and the induction hypothesis imply

hn,k(r) = hn−1,k(r) + hn−2,k−1(r) = hn−1,k(r + 1) + hn−2,k−1(r + 1) = hn,k(r + 1).

(b) We use induction on k to prove that hn,k(k − 1) − hn,k(k) = (−1)k , for all positive
integers n beginning with hn,1(0) = 0 and hn,1(1) = 1. By (1) and (2),

hn,k(r) − hn,k(r + 1) = (
hn−1,k(r) + hn−2,k−1(r)

)− (
hn−1,k(r) + hn−2,k−1(r − 1)

)
= −(hn−2,k−1(r − 1) − hn−2,k−1(r)

)
. (3)

With r = k − 1 ≤ ((n − 2) + 1)/2, the induction hypothesis completes the proof.

(c, d) We use induction on r . The number of k-element subsets of {1, . . . , n} having no
consecutive elements is

(
n−k+1

k

)
, corresponding to insertions of k balls in distinct posi-

tions between or outside n − k markers in a row. Thus hn,k(1) = (
n−k

k−1

)
, hn,k(2) = (

n−k−1
k−1

)
,

and, by (2), hn,k(3) = (
n−k−2
k−1

)+ (
n−k−1
k−2

)
. Using Pascal’s formula for binomial coefficients

twice, hn,k(1) − hn,k(3) = (
n−k−2
k−2

)
. Thus hn,k(1) − hn,k(3) > 0 unless k = (n + 1)/2, in

which case the difference is 0. This completes the proof for r = 1.
Now suppose r ≥ 2. If k = (n + 1)/2, then n is odd, and hn,k(r) is 1 when r is odd

and 0 when r is even, so the desired difference is 0. Hence we may restrict our attention to
k ≤ n/2, which yields k − 1 ≤ (n − 3 + 1)/2. Using (1) and (2), then (3), and finally (1)
and (2) again, we find

hn,k(r) − hn,k(r + 2) = hn−1,k(r) + hn−2,k−1(r) − hn−1,k(r + 1) − hn−2,k−1(r)

= −(hn−3,k−1(r − 1) − hn−3,k−1(r)
)

= −(hn−2,k−1(r − 1) − hn−2,k−1(r + 1)
)
.

Now the induction hypothesis completes the proof.

Editorial comment. Nigel Hodges conditioned on the number j of selected elements pre-
ceding r to prove

h(r) =
k−1∑
j=0

(
r − 1 − j

j

)(
n − r − k + 1 + j

k − 1 − j

)
.

He then used induction and Pascal’s formula to prove for r ≤ n − k + 1 that this expression
equals

∑r−1
j=0(−1)j

(
n−k−j

k−1−j

)
, from which (a)–(d) all follow quickly.

Also solved by H. Chen (China), C. Curtis & J. Boswell, N. Hodges (UK), Y. J. Ionin, O. P. Lossers (Nether-
lands), L. J. Peterson, R. Stong, and the proposer.

A Congruence for a Product of Quadratic Forms

12234 [2021, 179]. Proposed by Nicolai Osipov, Siberian Federal University, Krasnoyarsk,
Russia. Let p be an odd prime, and let Ax2 + Bxy + Cy2 be a quadratic form with A, B,
and C in Z such that B2 − 4AC is neither a multiple of p nor a perfect square modulo p.
Prove that ∏

0<x<y<p

(Ax2 + Bxy + Cy2)

is 1 modulo p if exactly one or all three of A, C, and A + B + C are perfect squares
modulo p and is −1 modulo p otherwise.

PROBLEMS AND SOLUTIONS 3



Solution by O. P. Lossers, Eindhoven University of Technology, Eindhoven, Netherlands.
All expressions below involving x and y take place in the finite field Fp with p elements.
We first study the desired product in general, leaving until later a consideration of how
many elements of {A,C,A + B + C} are squares. For convenience, define

Q(x, y) = Ax2 + Bxy + Cy2.

Since we are given that B2 − 4AC is a nonsquare, A and C must be nonzero, and it follows
that Q(x, y) 	= 0 when (x, y) 	= (0, 0). In order to evaluate the product

∏
0<x<y<p Q(x, y),

we want to group the factors by the value of Q(x, y). That is, for each D we seek the
number of solutions of Q(x, y) = D such that 0 < x < y < p.

For D 	= 0, since Q(x, y) − Dz2 = 0 determines a nondegenerate quadric, there are
altogether p2 − 1 solution triples (x, y, z) to Q(x, y) − Dz2 = 0. (See Lemma 7.23 on
p. 142 of J. W. P. Hirschfeld (1979), Projective Geometries over Finite Fields, Clarendon
Press.) The set of solution triples is invariant under multiplication by any nonzero ele-
ment of Fp. Hence the solutions come in p + 1 multiplicative classes of size p − 1, each
containing one triple of the form (x, y, 1), yielding p + 1 solutions to Q(x, y) = D.

This partitions the set of nonzero pairs (x, y) by the value of Q(x, y), with each value
D occurring exactly p + 1 times. Note that Q(x, y) = Q(p − x, p − y), so for fixed D

the number of pairs satisfying Q(x, y) = D with x < y equals the number of pairs with
x > y. Hence we will need to divide the number of occurrences of D by 2.

Since we require 0 < x < y < p in the stated product, we must also exclude occur-
rences of D that arise when x = 0, y = 0, or x = y. Two nonzero elements of Fp have the
same quadratic character if they are both squares or both nonsquares, equivalent to their
ratio being a square. Occurrences of D on the line x = 0 have Cy2 − D = 0, or y2 = D/C,
so there are two such pairs yielding D when D and C have the same quadratic character;
otherwise none. Similarly, there are two occurrences of D on y = 0 if and only if A and
D have the same quadratic character (satisfying x2 = D/A), and two occurrences of D

on x = y if and only if A + B + C and D have the same quadratic character (satisfying
x2 = D/(A + B + C)). Also, such occurrences on the three lines are distinct.

Let the number of squares among {A,C,A + B + C} be s. Starting with the p + 1 pairs
(x, y) ∈ F

2
p − (0, 0) that generate D, we subtract the occurrences with x = 0, y = 0, or

x = y and then divide the remaining occurrences by 2, as discussed above. We thus com-
pute that each square D occurs in the product (p + 1 − 2s)/2 times, while each nonsquare
D occurs in the product

(
p + 1 − 2(3 − s)

)
/2 times.

This tells us how many times we have the product of all the squares and how many
times we have the product of all the nonsquares. It is well known that the product of all
the squares is (−1)(p+1)/2, and the product of all the nonsquares is (−1)(p−1)/2, because
an element and its reciprocal have the same quadratic character. After canceling reciprocal
pairs and ignoring 1, we are left with −1, which is a square if and only if p ≡ 1 mod 4.

We thus compute∏
0<x<y<p

Q(x, y) = (−1)
1
2 (p+1) 1

2 (p+1−2s)(−1)
1
2 (p−1) 1

2 (p+1+2s−6)

= (−1)
1
4

(
(p+1)2+(p2−1)−4s−6(p−1)

)
= (−1)

1
2 (p2−2p+3−2s) = (−1)

1
2

(
(p−1)2+2−2s

)
= (−1)1−s .

This equals 1 or −1 when the number s of squares in {A,C,A + B + C} is odd or even,
respectively, as desired.

Also solved by C. Curtis & J. Boswell, Y. J. Ionin, R. Tauraso (Italy), and the proposer.
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An Application of Liouville’s Theorem

12235 [2021, 179]. Proposed by George Stoica, Saint John, NB, Canada. Let a0, a1, . . .

be a sequence of real numbers tending to infinity, and let f : C → C be an entire function
satisfying

|f (n)(ak)| ≤ e−ak

for all nonnegative integers k and n. Prove f (z) = ce−z for some constant c ∈ C with
|c| ≤ 1.

Solution by Kenneth F. Andersen, Edmonton, AB, Canada. We prove that the entire function
g(z) = ezf (z) satisfies

|g(z)| ≤ 1 (∗)

for all z. From this, Liouville’s theorem yields g(z) = c for some constant c, and then (∗)
yields |c| ≤ 1. Hence, f (z) = ce−z with |c| ≤ 1, as claimed.

Since f (z) is entire, for z = x + iy and k ≥ 0 we have

|g(z)| = |ez|
∣∣∣∣∣

∞∑
n=0

f (n)(ak)

n!
(z − ak)

n

∣∣∣∣∣ ≤ ex

∞∑
n=0

|f (n)(ak)|
n!

|z − ak|n

≤ exe−ak

∞∑
n=0

|z − ak|n
n!

= ex−ak+|z−ak |.

Since limk→∞ ak = ∞, we have x < ak for sufficiently large k. Thus, for such k,

|g(z)| ≤ e|z−ak |−|x−ak | = exp

(
y2

|z − ak| + |x − ak|
)

.

Taking the limit as k → ∞, we obtain (∗), which completes the proof.

Also solved by P. Bracken, L. Han (USA) & X. Tang (China), E. A. Herman, K. T. L. Koo (China), O. Kouba
(Syria), K. Sarma (India), A. Sasane (UK), A. Stadler (Switzerland), J. Yan (China), and the proposer.

The Googolth Term of a Sequence

12237 [2021, 276]. Proposed by Donald E. Knuth, Stanford University, Stanford, CA. Let
x0 = 1 and xn+1 = xn + �x 3/10

n 
 for n ≥ 0. What are the first 40 decimal digits of xn when
n = 10100?

Solution by Richard Stong, Center for Communications Research, San Diego, CA. The first
40 digits are 43236 87954 44259 51263 21573 91617 78825 77073.

Let f (x) = (10/7)x7/10, and let ak = f (xk) for all k. Applying the mean value theorem
to f yields cn ∈ (xn, xn+1) such that

an+1 − an = c−3/10
n (xn+1 − xn) = c−3/10

n �x3/10
n 
.

Since cn > xn, this implies an+1 − an < 1. Computing x6 = 7 and a6 = 10 · 7−3/10 < 6,
we obtain an < n and hence xn < (7n/10)10/7 for n ≥ 6. Putting n = 10100, we obtain an
upper bound for xn less than

4.3236 87954 44259 51263 21573 91617 78825 77073 38123 × 10142.

We now provide a lower bound for xn. Applying the mean value theorem to g(x) =
x3/10 yields bn ∈ (xn, xn+1) such that

c3/10
n − x3/10

n < x
3/10
n+1 − x3/10

n = 3

10
b−7/10

n (xn+1 − xn) = 3

10
b−7/10

n �x3/10
n 
 < 1.

PROBLEMS AND SOLUTIONS 5



Hence

an+1 − an = 1 − c
3/10
n − �x3/10

n 

c

3/10
n

> 1 − 2

x
3/10
n

. (∗)

By direct iteration, x45 = 102 > 410/3. Since 〈xn〉 is increasing, an+1 ≥ an + 1/2 whenever
n ≥ 45. From a45 > 45/2, for n ≥ 45 we conclude that an > n/2, hence xn > (7n/20)10/7.
Explicit computation shows that this lower bound for xn also holds for n < 45. Therefore,
summing (∗) from 1 through n − 1 gives

an > a1 + (n − 1) −
n−1∑
k=1

2

x
3/10
k

> n −
n−1∑
k=1

2

(7k/20)3/7
> n − 7

2(7/20)3/7
n4/7,

where at the last step we used the standard integral bound

n−1∑
k=1

1

k3/7
≤
∫ n

0

1

t3/7
dt = 7

4
n4/7.

For n = 10100, this yields a lower bound for xn greater than

4.3236 87954 44259 51263 21573 91617 78825 77073 37651 × 10142.

Therefore, the first 40 digits of xn when n = 10100 are as claimed.

Also solved by O. P. Lossers (Netherlands), A. Stadler (Switzerland), R. Tauraso (Italy), E. Treviño, T. Wilde
(UK), The Logic Coffee Circle (Switzerland), and the proposer.

Collinear Midpoints from a Glide Reflection

12238 [2021, 276]. Proposed by Tran Quang Hung, Hanoi, Vietnam. Let ABCD be a
convex quadrilateral with AD = BC. Let P be the intersection of the diagonals AC and
BD, and let K and L be the circumcenters of triangles PAD and PBC, respectively. Show
that the midpoints of segments AB, CD, and KL are collinear.

Solution by Michel Bataille, Rouen, France. Let E and F be the midpoints of AB and CD,
respectively. Let m be the line through D that is parallel to EF , and let m′ be the image of
m under reflection through EF . Since F is the midpoint of CD, the point C must lie on
m′. Let � be the circle centered at B with radius AD. Since AD = BC, the point C also
lies on �.

Consider the 180◦ rotation of the plane centered at E. This rotation sends A to B and
D to some point D′. The rotation sends m to m′, so D′ lies on m′, and since BD′ = AD,
the point D′ also lies on �. However, D′ cannot be C, because the midpoint of D′D is E,
whereas the midpoint of CD is F . Thus � and m′ intersect at two points, and those two
points are C and D′. It follows that if n is the line through B that is perpendicular to EF ,
then C is the reflection of D′ through n.

Let g be the transformation of the plane consisting of rotation by 180◦ centered at E

followed by reflection through n. One sees easily that g is an orientation-reversing isometry
that sends A to B and D to C. (The transformation g can also be described as a glide
reflection with axis EF .)

For any lines � and �′, let ∠(�, �′) denote the directed angle from � to �′. Let �AD and
�BC be the circumcircles of �PAD and �PBC, respectively, and let Q = g(P ).

Since g is orientation-reversing, ∠(QB,QC) = ∠(PD,PA) = ∠(PB, PC). There-
fore Q lies on �BC . However, also Q, B, and C lie on g(�AD), so g(�AD) = �BC . It
follows that g(K) = L, and therefore the midpoint of KL lies on EF .
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Editorial comment. This solution shows that the quadrilateral need not be convex. Indeed,
it need not even be simple, as long as the lines AC and BD intersect.

Also solved by A. Ali (India), J. Cade, H. Chen (China), P. De (India), G. Fera (Italy), D. Fleischman, K. Gates-
man, O. Geupel (Germany), J.-P. Grivaux (France), W. Janous (Austria), D. Jones & M. Getz, O. Kouba
(Syria), K.-W. Lau (China), J. H. Lindsey II, O. P. Lossers (Netherlands), C. R. Pranesachar (India), A. Stadler
(Switzerland), R. Stong, R. Tauraso (Italy), M. Tetiva (Romania), T. Wiandt, L. Wimmer (Germany), L. Zhou,
Davis Problem Solving Group, and the proposer.

Factorials and Powers of 2

12239 [2021, 276]. Proposed by David Altizio, University of Illinois, Urbana, IL. Deter-
mine all positive integers r such that there exist at least two pairs of positive integers (m, n)

satisfying the equation 2m = n! + r .

Solution by Celia Schacht, North Carolina State University, Raleigh, NC. There are two
such values of r . They are r = 2, with 23 = 3! + 2 and 22 = 2! + 2, and r = 8, with
27 = 5! + 8 and 25 = 4! + 8. We show that there are no other values.

If 2m1 = n1! + r and 2m2 = n2! + r , then 2m1 − n1! = 2m2 − n2!. For x ∈ N, let 2v(x) be
the highest power of 2 dividing x. Note that x can be uniquely written as 2v(x) times an odd
number, which we call the odd part of x. Since r > 0, we have 2mi > ni!, so mi > v(ni!)
for i ∈ {1, 2}. Therefore,

v(n1!) = v(2m1 − n1!) = v(2m2 − n2!) = v(n2!).

Given that (m1, n1) 	= (m2, n2), we may assume m1 > m2 and n1 > n2. If there are any
even numbers from n2 + 1 to n1, then v(n1!) > v(n2!), so v(n1!) = v(n2!) implies that n2

is even and n1 = n2 + 1. Let n2 = 2k. Thus

2m1 − 2m2 = n1! − n2! = (2k) · (2k)!. (4)

The odd part of the left side is 2m1−m2 − 1. It equals the product of the odd parts of 2k and
(2k)!, so it is at least the odd part of (2k)!, which we write as 2q + 1. That is, 2m1−m2 − 1 ≥
2q + 1.

By dividing out all the factors of 2 from (2k)!, we obtain

v((2k)!) =
∞∑
i=1

⌊
2k

2i

⌋
<

∞∑
i=1

2k

2i
= 2k.

First consider the case k ≥ 5. By induction, (2k)! > 24k for k ≥ 5. Therefore,

24k < (2k)! = 2v((2k)!)(2q + 1) < 22k(2q + 1),

so 22k − 1 < 22k < 2q + 1 ≤ 2m1−m2 − 1. Also (2k)! = n2! < n2! + r = 2m2 , which yields

(2k)!
(
22k − 1

)
< 2m2

(
22k − 1

)
< 2m1 − 2m2 = (2k) · (2k)!.

Dividing by (2k)! yields 22k − 1 < 2k, which is false for all positive k. This contradiction
eliminates the possibility k ≥ 5.

It remains to check the cases of the form (n1, n2) = (2k + 1, 2k) for k ∈ {1, 2, 3, 4}.
According to (4), we need powers of 2 differing by 2k(2k)!. For 1 ≤ k ≤ 4, the values
of 2k(2k)! are 4, 96, 4320, and 322560, respectively. Examining powers of 2 yields the
solutions for k ∈ {1, 2} listed at the start, but no solution for k ∈ {3, 4}.
Also solved by A. Ali (India), F. R. Ataev (Uzbekistan), C. Curtis & J. Boswell, S. M. Gagola Jr., K. Gates-
man, M. Ghelichkhani (Iran), N. Hodges (UK), P. Komjáth (Hungary), O. P. Lossers (Netherlands), S. Omar
(Morocco), J. Polo-Gómez (Canada), K. Sarma (India), A. Stadler (Switzerland), R. Stong, M. Tang,
R. Tauraso (Italy), E. Treviño, T. Wilde (UK), L. Zhou, and the proposer.
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Harmonic Sums: Euler Once, Abel Twice

12241 [2021, 276]. Proposed by Ovidiu Furdui and Alina Sı̂ntămărian, Technical Univer-
sity of Cluj-Napoca, Cluj-Napoca, Romania. Prove

∞∑
n=1

(−1)n n

(
1

4n
− ln 2 +

2n∑
k=n+1

1

k

)
= ln 2 − 1

8
.

Solution by Kee-Wai Lau, Hong Kong, China. We first address the partial sum of the series
on the left side and show

8
N∑

n=1

(−1)nn

(
1

4n
− ln 2 +

2n∑
k=n+1

1

k

)
(1)

= 2(−1)N(2N + 1)

(
2N∑

k=N+1

1

k
− ln 2

)
+

N∑
n=1

(−1)n

n
+ (−1)N − 1 + 2 ln 2.

Since ln 2 is irrational, it must have the same coefficient on both sides, requiring

8
N∑

n=1

(−1)nn = 2(−1)N(2N + 1) − 2.

This equality is easily verified by considering odd and even N separately. Let K(N) denote
the quantity on both sides. In addition, since 8

∑N
n=1(−1)n(1/4) = (−1)N − 1, the sum of

the N initial terms on the left in (1) equals the sum of two terms on the right. It remains to
prove

N∑
n=1

8(−1)nn

2n∑
k=n+1

1

k
= 2(−1)N(2N + 1)

2N∑
k=N+1

1

k
+

N∑
n=1

(−1)n

n
.

Let L(N) denote the left side in this equation. Rewrite that double sum as

L(N) =
N∑

n=1

(K(n) − K(n − 1))J (n),

where J (n) = ∑2n
k=n+1 1/k and K(0) = 0. By partial summation,

L(N) = K(N)J (N) +
N−1∑
n=1

K(n)(J (n) − J (n + 1)).

Now

J (n) − J (n + 1) = 1

n + 1
− 1

2n + 1
− 1

2n + 2
= −1

2(n + 1)(2n + 1)
.

Hence

L(N) = (
2(−1)N(2N + 1) − 2

)
J (N) +

N−1∑
n=1

(
(−1)n+1(2n + 1) + 1

) 1

(n + 1)(2n + 1)

= 2(−1)N(2N + 1)J (N) +
N−1∑
n=1

(−1)n+1

n + 1
− 2J (N) +

N−1∑
n=1

1

(n + 1)(2n + 1)
. (2)

Restoring the expression involving J in the last summand, the last two terms in (2) simplify
by telescoping as

−2J (N) − 2
N−1∑
n=1

(J (n) − J (n + 1)) = −2J (N) − 2(J (1) − J (N)) = −1.
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Now the expression for L(N) reduces to the right side of (1), completing the proof of the
identity.

Let HN denote the harmonic number
∑N

n=1 1/n. By Euler–Maclaurin summation,

HN = ln N + γ + 1

2N
+ O(N−2),

where γ is Euler’s constant. Thus

2N∑
n=N+1

1

n
= H2N − HN = ln 2 − 1

4N
+ O(N−2).

Hence the first term on the right side of (1) simplifies as

2(−1)N(2N + 1)

(−1

4N
+ O(N−2)

)
= −(−1)N + O(N−1).

Also,

∞∑
n=1

(−1)n

n
= − ln 2.

Thus the right side of (∗) converges to −1 + ln 2, which completes the proof.

Editorial comment. Another approach to evaluating the left side is to introduce the factor xn

for 0 < x < 1 into the sum, expand, and let x approach 1. This is an application of Abel’s
limit theorem, known as Abel summation. Ulrich Abel (fittingly) and Vitaliy Kushnirevych
used this method. With

an = 1

4n
− ln 2 + H2n − Hn and g(x) =

∞∑
n=1

Hnx
n = − ln(1 − x)

1 − x
,

let

f (x) =
∞∑

n=1

an(−x)n = − ln(1 + x)

4
− x ln 2

1 + x
+ g(i

√
x) + g(−i

√
x)

2
− g(−x).

Upon differentiating f (x), we obtain a power series for (−1)nnan, and Abel summation
yields the result.

Many solvers used a method somewhat akin to Abel summation, that of integral repre-
sentation. For example, Richard Stong used

an = 1

2

∫ 1

0

1 − x

1 + x
x2n−1 dx.

Upon interchange of summation and integration (justified by dominated convergence), the
desired sum then becomes the readily evaluated integral

−1

2

∫ 1

0

1 − x

1 + x

x

(1 + x2)2
dx.

Also solved by U. Abel & V. Kushnirevych (Germany), A. Berkane (Algeria), P. Bracken, B. Bradie, H. Chen,
G. Fera (Italy), K. Gatesman, M. L. Glasser, G. C. Greubel, L. Han (US) & X. Tang (China), E. A. Herman,
N. Hodges (UK), S. Kaczkowski, O. Kouba (Syria), P. W. Lindstrom, O. P. Lossers (Netherlands), M. Omarjee
(France), K. Sarma (India), A. Stadler (Switzerland), S. M. Stewart (Australia), R. Stong, R. Tauraso (Italy),
M. Vowe (Switzerland), T. Wiandt, and the proposer.
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CLASSICS

C10. Due to Douglas Lind, suggested by the editors. Show that there are infinitely many
numbers that appear at least six times in Pascal’s triangle.

How Much of a Parabolic Arc Can Fit in a Unit Disk?

C9. From the 2001 Putnam Competition. Can an arc of a parabola inside a circle of radius
1 have a length greater than 4?

Solution. The answer is yes. For a positive real number A, the parabola y = Ax2 intersects
the circle x2 + (y − 1)2 = 1 at the origin and at the points (

√
2A − 1/A, 2 − 1/A) and

(−√
2A − 1/A, 2 − 1/A). The length L(A) of the parabolic arc between these points con-

sists of two congruent parts, one in each quadrant. Expressing the length of one of these
parts as an integral with respect to the variable y and then letting u = Ay, we obtain

L(A) = 2
∫ 2−1/A

0

√
1 + 1

4Ay
dy = 2

A

∫ 2A−1

0

√
1 + 1

4u
du.

It suffices to find a value of A so that L(A) is greater than 4. This occurs when

∫ 2A−1

0

(√
1 + 1

4u
− 1

)
du ≥ 1.

Since (√
1 + 1

4u
− 1

)(√
1 + 1

4u
+ 1

)
= 1

4u
,

when u > 1/12 we have √
1 + 1

4u
− 1 ≥ 1

12u
.

Therefore∫ 2A−1

0

(√
1 + 1

4u
− 1

)
du ≥

∫ 2A−1

1

(√
1 + 1

4u
− 1

)
du ≥

∫ 2A−1

1

1

12u
du.

Because
∫∞

1 (1/x) dx diverges, we may choose A so large that this last integral exceeds 1.

Editorial comments. Numerical calcu-
lation shows that the longest arc is
achieved when A is approximately 94.1,
at which point the length is approximately
4.00267. The figure shows this longest
parabolic arc. Not until A is approxi-
mately 37 does the arc length exceed 4.

In the 2001 Putnam Competition, just
one participant (out of approximately
3000) earned full credit for solving this
problem.
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