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PROBLEMS AND SOLUTIONS

Edited by Daniel H. Ullman, Daniel J. Velleman,

Stan Wagon, and Douglas B. West

with the collaboration of Paul Bracken, Ezra A. Brown, Hongwei Chen, Zachary Franco,

George Gilbert, László Lipták, Rick Luttmann, Hosam Mahmoud, Frank B. Miles,

Lenhard Ng, Rajesh Pereira, Kenneth Stolarsky, Richard Stong, Lawrence Washington,

and Li Zhou.

Proposed problems, solutions, and classics should be submitted online at

americanmathematicalmonthly.submittable.com/submit.

Proposed problems must not be under consideration concurrently at any other jour-

nal, nor should they be posted to the internet before the deadline date for solutions.

Proposed solutions to the problems below must be submitted by March 31, 2023.

Proposed classics should include the problem statement, solution, and references.

More detailed instructions are available online. An asterisk (*) after the number of

a problem or a part of a problem indicates that no solution is currently available.

PROBLEMS

12349. Proposed by Roberto Tauraso, Tor Vergata University of Rome, Rome, Italy. Let An

be the set of permutations of {1, . . . , n} that have at least one xed point. For π ∈ An, we

write Fix(π) for {j : π(j) = j}. Evaluate



π∈An

⎛

⎝

sign(π)

|Fix(π)|



j∈Fix(π)

j

⎞

⎠ .

12350. Proposed by Nick MacKinnon, Stanbury, UK. What is the smallest positive integer

k such that for any quadratic polynomial P with integer coefcients, one of the integers

P(1), . . . , P (k) has a zero digit when written in base two?

12351. Proposed by Seán Stewart, King Abdullah University of Science and Technology,

Thuwal, Saudi Arabia. Evaluate

 ∞

0

ln


cos2 x


sin3 x

x3


1+ 2 cos2 x
 dx.

12352. Proposed by Haoran Chen, Xi’an Jiaotong–Liverpool University, Suzhou, China.

(a) Suppose G is a bipartite planar graph such that for any two vertices A and B, the

number of shortest paths from A to B is odd. Prove that G is a tree.

(b)* Suppose G is a bipartite planar graph such that for any two vertices A and B, the

number of paths from A to B is odd. Must G be a tree?

12353. Proposed by Yongge Tian, Shanghai Business School, Shanghai, China. Let A be a

square matrix with complex entries, and let A∗ denote the conjugate transpose of A. Show

that AA∗ = A∗A if and only if rank


A2


= rank(A), A2A∗ = A∗A2, and A3A∗ = A∗A3.

12354. Proposed by Slobodan Filipovski, University of Primorska, Koper, Slovenia. Let n

and k be positive integers with n ≥ 3, and let p(x) = xn + xn−1 + · · · + x − k.

http://dx.doi.org/doi.org/10.1080/00029890.2022.2108675
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(a) Prove that the roots of p(x) in the complex plane are simple.

(b) Prove that if k ≥ n + 1, then p(x) has at least one root with negative real part and

nonzero imaginary part.

12355. Proposed by Cezar Alexandru Trancanau and Leonard Giugiuc, Drobeta-Turnu

Severin, Romania. Let x, y, and z be the side lengths of a nondegenerate, nonequilateral

triangle with largest angle α. Let T be the set of lengths t such that there exists an equilat-

eral triangle ABC in the plane with origin O such that AB = t , OA = x, OB = y, and

OC = z.

(a) Prove that |T | = 2.

(b) Prove that the smaller of the two equilateral triangles determined by T does not contain

O in its interior.

(c) Prove that the larger of the two equilateral triangles determined by T contains O in its

interior if and only if π/3 < α < 2π/3.

SOLUTIONS

Making Equality Improbable with Two Dice

12223 [2021, 88]. Proposed by Michael Elgersma, Plymouth, MN, and James R. Roche,

Ellicott City, MD. Two weighted m-sided dice have faces labeled with the integers 1 to m.

The rst die shows the integer i with probability pi , while the second die shows the integer

i with probability ri . Alice rolls the two dice and sums the resulting integers; Bob then

independently does the same.

(a) For each m with m ≥ 2, nd the probability vectors (p1, . . . , pm) and (r1, . . . , rm) that

minimize the probability that Alice’s sum equals Bob’s sum.

(b)* Generalize to n dice, with n ≥ 3.

Composite solution to part (a) by the proposers and Shuyang Gao, George Washington

University, Washington, DC. The minimum probability is 3/(6m − 4), achieved only by

the two distributions
1

2
, 0, 0, . . . , 0, 0,

1

2



and
1

3m− 2
(2, 3, 3, . . . , 3, 3, 2).

We start with some notation. We write v for a probability (row) vector (v1, . . . , vm)

associated with the faces of an m-sided die; that is, the probability that a toss of such a die

turns up value i is vi (similarly with other letters). The reverse R(v) of v is (vm, . . . , v1).

We say that v is symmetric if v = R(v). For symmetrization and antisymmetrization,

let Sv = (v + R(v))/2 and Av = (v − R(v))/2. Thus v = Sv + Av, R(Sv) = Sv, and

R(Av) = −Av.

Let p and r denote the probability vectors for the two dice. Let X and Y be the sums

rolled by Alice and Bob, respectively. Note that X and Y have the same distribution. Let

s = (s2, . . . , s2m), where

sk = P(X = k) = P(Y = k) =

m


i=1

pirk−i ,

with the understanding that rj = 0 unless 1 ≤ j ≤ m. With ∗ denoting convolution of

vectors, we write s as p ∗ r.
Our rst task is to show that the probability is minimized only when p and r are sym-

metric. The tool for this is the claim

P(X = Y ) ≥ (Sp ∗ Sr) · (Sp ∗ Sr),
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with equality holding if and only if p and r are both symmetric probability vectors. Given

this, let p and r be minimizing probability vectors. If we replace p and r by their sym-

metrizations Sp and Sr, then the new resulting probability P(X = Y ) will be equal to

(Sp ∗ Sr) · (Sp ∗ Sr), which will be strictly smaller than the original probability unless

p = Sp and r = Sr.

Hence we proceed to the claim. Since the players’ rolls are independent,

P(X = Y ) =

2m


k=2

P(X = k)P(Y = k) =

2m


k=2



m


i=1

pirk−i

2

.

We write this using convolution and inner product as

P(X = Y ) = (p ∗ r) · (p ∗ r) =


(Sp+Ap) ∗ (Sr+Ar)


·


(Sp+Ap) ∗ (Sr+Ar)


.

By linearity of convolution and inner product, this expression expands into sixteen terms of

the form (fp ∗ gr) · (hp ∗ ir) with f, g, h, i ∈ {S,A}. We show that the contribution from

the terms other than (Sp ∗ Sr) · (Sp ∗ Sr) is nonnegative and is 0 if and only if p and r are

symmetric.

Since Sp ∗ Sr and Ap ∗ Ar are symmetric and Sp ∗ Ar and Ap ∗ Sr are antisymmetric,

each of the eight terms having one or three factors in {Ap, Ar} is the dot product of a

symmetric and an antisymmetric vector and hence vanishes.

With f, g ∈ {S,A}, we nd four terms of the form (fp ∗ gr) · (fp ∗ gr). Each is non-

negative, since it is the dot product of a vector with itself, and it equals 0 if and only if

fp ∗ gr = 0. The convolution is 0 when f = A and p is symmetric, since then Ap = 0.

However, if p is not symmetric, then Ap ∗ Sr = 0. The corresponding statements hold also

for g. Hence the contribution from these four terms is at least (Sp ∗ Sr) · (Sp ∗ Sr), with

equality if and only if both p and r are symmetric.

The remaining four terms use each factor in {Sp, Sr, Ap, Ar}. They sum to

2


(Sp ∗ Sr) · (Ap ∗ Ar)+ (Sp ∗ Ar) · (Ap ∗ Sr)


. (1)

We claim that this sum is 0. We have

(Sp ∗ Sr) · (Ap ∗ Ar) =


Sp(k)Sr()Ap(k
)Ar(

) (2)

and

(Sp ∗ Ar) · (Ap ∗ Sr) =


Sp(k)Ar(
)Ap(k

)Sr(), (3)

where the sum in (2) is over choices of k, , k,  in {1, . . . , m} such that k +  = k + ,

and the sum in (3) is over choices such that k +  = k + . Note that k +  = k + 

if and only if k − k =  −  and that k +  = k +  if and only if k − k = − . By

symmetry and antisymmetry,

Sr() = Sr(m− + 1) and Ar(
) = −Ar(m−  + 1).

Thus Sp(k)Sr()Ap(k
)Ar(

) = −Sp(k)Sr(m −  + 1)Ap(k
)Ar(m −  + 1). When we

require k − k =  − , at the same time we have k − k = (m− + 1)− (m−  + 1).

Hence terms in the sum in (3) negate corresponding terms in the sum in (2), and the expres-

sion in (1) is 0. This completes the proof of the claim.

The claim implies the desired result in the case m = 2, giving p = r = (1/2, 1/2). For

the remainder of the argument, we assume m ≥ 3. With p and r symmetric, the convolu-

tion s is also a symmetric probability vector, and the desired probability is
2m

k=2 s
2
k . By

symmetry,

sm+1 =

m


i=1

pirm−i+1 ≥ p1rm + pmr1 = 2p1r1 = 2s2. (4)
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This suggests that we consider the following nonlinear optimization problem:

minimize 2(s22 + · · · + s2m)+ s2m+1

subject to the constraints

2(s2 + s3 + · · · + sm)+ sm+1 = 1, 2s2 ≤ sm+1, and si ≥ 0 for 2 ≤ i ≤ m+ 1.

Extending (s2, . . . , sm+1) by letting s2m−i = s2+i for 0 ≤ i ≤ m− 2 relates this optimiza-

tion problem to the symmetric probability vector s considered earlier. This problem incor-

porates the constraint (4), but it ignores the requirement in the original problem that s be

realizable as the convolution of two probability vectors. It then sufces to show that we

can realize the resulting optimum by such a convolution.

Such constrained optimization problems can be solved using the Karush-Kuhn-Tucker

(KKT) conditions (see for example S. Boyd and L. Vandenberghe (2004), Convex Opti-

mization, Cambridge University Press). Satisfying the conditions is sufcient for a global

optimum. The method starts with a generalized Lagrangian incorporating the objective

function, the inequality constraints, and the equality constraints:

L = 2(s22 + · · · + s2m)+ s2m+1 + μ(2s2 − sm+1)+ λ


2(s2 + · · · + sm)+ sm+1 − 1


.

The KKT conditions require partial derivatives with respect to the original variables and

the multipliers for equality constraints to be 0, while for the multipliers of the inequal-

ity constraints we must have nonnegativity (see (9)) and “complementary slackness” (see

(10)). That is,

∂L

∂s2
= 4s2 + 2μ+ 2λ = 0; (5)

∂L

∂si
= 4si + 2λ = 0 for 3 ≤ i ≤ m; (6)

∂L

∂sm+1

= 2sm+1 − μ+ λ = 0; (7)

2(s2 + · · · + sm)+ sm+1 − 1 = 0. (8)

μ ≥ 0; and (9)

μ(2s2 − sm+1) = 0. (10)

We also require si ≥ 0 for all i in {2, . . . , m+ 1}.

We show rst that λ must be negative. If λ > 0, then by (6) each si with i ≥ 3 is

negative, which is forbidden. If λ = 0, then (6) requires s3 = · · · = sm = 0. Since (5) now

reads 4s2 + 2μ = 0, it forbids μ > 0, so μ = 0 by (9). Now s2 = 0 by (5) and sm+1 = 0

by (7), but that contradicts (8).

Hence λ < 0. Note that subtracting (5) from (7) gives 2sm+1 − 4s2 = 3μ+ λ. Since we

require 2s2 ≤ sm+1 and have λ < 0, we must have μ > 0. Now (10) requires 2s2 = sm+1.

With these restrictions, (5)–(7) reduce to

λ = −3μ, s2 = μ, sm+1 = 2μ, and si =
3

2
μ for 3 ≤ i ≤ m.

Using sm+1 + 2
m

i=2 si = 1, we obtain μ = 1/(3m− 2), and consequently

s2 =
1

3m− 2
, sm+1 =

2

3m− 2
, and si =

3

6m− 4
for 3 ≤ i ≤ m.
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Extending back to the probability vector s with indices 2 through 2m, we obtain

s =
1

6m− 4
(2, 3, 3, . . . , 3, 3, 4, 3, 3, . . . , 3, 3, 2), (11)

yielding the minimum probability
2m

k=2 s
2
k = 3/(6m− 4).

This solution to the optimization problem is achievable as the convolution of the two

probability vectors
1

2
, 0, 0, . . . , 0, 0,

1

2



and
1

3m− 2
(2, 3, 3, . . . , 3, 3, 2).

Our nal task is to show that these are the only probability vectors whose convolution

is (11). To achieve s2 = s2m > 0, we have p1 = pm > 0 and r1 = rm > 0. Since we must

satisfy

2s2 = sm+1 = p1rm + pmr1 +

m−1


i=2

pirm+1−i ,

we obtain pirm+1−i = 0 for 2 ≤ i ≤ m− 1. Consequently, for each i with 2 ≤ i ≤ m− 1,

pi = pm+1−i = 0 or rm+1−i = ri = 0.

By symmetry, we may take p2 = 0. Now let k be the least integer in {2, . . . , m} such that

pk > 0. It sufces to show that k = m, which yields p = (1/2, 0, . . . , 0, 1/2), whereupon

the known convolution (11) yields r as claimed.

Suppose k < m. By (11),

3

6m− 4
= si = p1ri−1 + 0+ 0+ · · · + 0 for 3 ≤ i ≤ k.

Since p1r1 = 2/(6m− 4), we obtain ri−1 = 3r1/2 > 0 for 3 ≤ i ≤ k.

Next, sk+1 = p1rk + pkr1. Since pkrk = pkrm+1−k = 0 and pk > 0, we have rk = 0.

Now pkr1 = sk+1 = 3/(6m− 4) and p1r1 = s2 = 2/(6m− 4). Thus, pk = 3p1/2. Finally,

sk+2 ≥ pkr2 =



3

2
p1



3

2
r1



> 2s2 =
4

6m− 4
,

contradicting sk+2 ≤ 4/(6m− 4). Thus k = m, completing the proof.

Editorial comment. The problem arose as an extension of Problem 1290 in Stan Wagon’s

Problem of the Week, which in turn was inspired by a problem on Tanya Khovanova’s

blog: blog.tanyakhovanova.com/2018/12/two-dice.

No solutions to part (b) or other correct solutions to part (a) were received.

A Lower Bound on Average Squared Acceleration

12229 [2021, 89]. Proposed by Moubinool Omarjee, Lycée Henri IV, Paris, France. Let

f : [0, 1] → R be a function that has a continuous second derivative and that satises

f (0) = f (1) and
 1

0
f (x) dx = 0. Prove

30240

 1

0

xf (x) dx

2

≤
 1

0



f (x)
2

dx.

Solution by Rory Molinari, Beverly Hills, MI. Applying integration by parts twice, and

using
 1

0
f (x) dx = 0 and

 1

0
f (x) dx = f (1)− f (0) = 0, we get

 1

0

xf (x) dx =

 1

0



x −
1

2



f (x) dx = −
 1

0



x2

2
−

x

2



f (x) dx

= −
 1

0



x2

2
−

x

2
+

1

12



f (x) dx =

 1

0



x3

6
−

x2

4
+

x

12



f (x) dx.
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Thus, by the Cauchy–Schwarz inequality,

 1

0

xf (x) dx

2

=

 1

0



x3

6
−

x2

4
+

x

12



f (x) dx

2

≤



 1

0



x3

6
−

x2

4
+

x

12

2

dx



·

 1

0

(f (x))2 dx



=
1

30240

 1

0

(f (x))2 dx,

and the desired conclusion follows.

Editorial comment. Justin Freeman generalized the problem by proving

(2n+ 2)!

|B2n+2|

 1

0

xf (x) dx

2

≤
 1

0

(f (n)(x))2 dx,

where Bk is the kth Bernoulli number.

Also solved by U. Abel & V. Kushnirevych (Germany), K. F. Andersen (Canada), M. Bataille (France),

A. Berkane (Algeria), P. Bracken, B. Bradie, H. Chen, G. Fera (Italy), J. Freeman (Netherlands), K. Gates-

man, G. Góral (Poland), N. Grivaux (France), L. Han, E. A. Herman, L. T. L. Koo (China), O. Kouba (Syria),

K.-W. Lau (China), Z. Lin (China), J. H. Lindsey II, O. P. Lossers (Netherlands), I. Manzur (UK) &M. Graczyk

(France), T. M. Mazzoli (Austria), A. Natian (UK), A. Pathak (India), B. Shala (Slovenia), A. Stadler (Switzer-

land), R. Stong, R. Tauraso (Italy), E. I. Verriest, M. Vowe (Switzerland), J. Vukmirović (Serbia), T. Wiandt,

J. Yan (China), L. Zhou, U. M. 6. P. MathClub (Morocco), and the proposer.

Families of Permutations with Equal Size

12230 [2021, 178]. Proposed by David Callan, University of Wisconsin, Madison, WI. Let

[n] = {1, . . . , n}. Given a permutation (π1, . . . ,πn) of [n], a right-left minimum occurs at

position i if πj > πi whenever j > i, and a small ascent occurs at position i if πi+1 =

πi + 1. Let An,k denote the set of permutations π of [n] with π1 = k that do not have right-

left minima at consecutive positions, and let Bn,k denote the set of permutations π of [n]

with π1 = k that have no small ascents.

(a) Prove |An,k| = |Bn,k| for 1 ≤ k ≤ n.

(b) Prove |An,j | = |An,k| for 2 ≤ j < k ≤ n.

Solution by Richard Stong, Center for Communications Research, San Diego, CA. For

n = 1, we have |A1,1| = |B1,1| = 1. Hence it sufces to show that both cn,k = |An,k| and

cn,k = |Bn,k| satisfy the recurrence

cn,k =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

n−1


j=2

cn−1,j if k = 1,

n−1


j=1

cn−1,j if k > 1.

The common recurrence then shows (a), and its form implies (b).

To a permutation π of [n], associate the permutation σ of [n− 1] obtained by deleting

π1 and decreasing all entries exceeding π1 by 1. From π1 and σ , we can reconstruct π

uniquely. In addition, σ has a right-left minimum at position i if and only if π has a right-

left minimum at position i + 1.

For k > 1, any permutation σ of [n− 1] with no right-left minima in consecutive posi-

tions arises from a permutation π ∈ An,k , and permutations in An,k generate such σ , since

position 1 in π is not a right-left minimum. Thus, the recursive formula holds for |An,k|

when k > 1. When k = 1, π has a right-left minimum in position 1, so we must ensure
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that the corresponding σ has no right-left minimum in position 1, which is equivalent to

σ1 = 1. Thus, the formula holds also for |An,1|.

We show that this recurrence also holds for Bn,k . Again consider the same map, with

π ∈ Bn,k . If σ has no small ascents, then also π has none, unless σ1 = k. On the other

hand, if π has no small ascents, then σ has at most one small ascent, with equality exactly

when πj = k − 1 and πj+1 = k + 1 for some j . Let En−1,k be the set of permutations of

[n− 1] with a small ascent involving entries k − 1 and k and no other small ascents. We

obtain

|Bn,k| =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

n−1


j=2

|Bn−1,j | if k = 1,

|En−1,k| +


j =k

|Bn−1,j | if 2 ≤ k ≤ n− 1,

n−1


j=1

|Bn−1,j | if k = n.

We now prove |En−1,k| = |Bn−1,k| when n ≥ 3, which reduces this expression to the

desired recurrence. Suppose σ ∈ En−1,k . Since σ has only one small ascent, the value k + 1

does not follow k in σ . Hence collapsing the pair (k − 1, k) of consecutive values to k − 1

and decreasing larger values by 1 gives a permutation of [n− 2] with no small ascent, and

the map is reversible. Hence |En−1,k| =
n−2


j=1

|Bn−2,j |. We now have a proof of the desired

recurrence by induction on n, since the induction hypothesis yields |En−1,k| = |Bn−1,k|.

Editorial comment. The proposer constructed a bijection from An,k to Bn,k iteratively as

follows. If the current permutation has a small ascent, choose the left-most small ascent and

move the larger value j + 1 so that it immediately follows the largest right-left minimumm

that it exceeds. For example, π = (10, 11, 12, 2, 3, 1, 6, 7, 4, 8, 9, 5) has right-left minima

at values 5, 4, and 1 (no two consecutive), and it has small ascents ending in the values 11,

12, 3, 7, and 9. The rst iteration moves 11 to immediately after 5 and the fourth and nal

iteration yields (10, 12, 2, 1, 3, 6, 4, 8, 5, 7, 9, 11).

Yury Ionin observed that exchanging the values k and k + 1 in π ∈ An,k yields a bijec-

tion between An,k and An,k+1 for k > 1. This is implicit in the featured solution.

Also solved by K. Gatesman, A. Goel, Y. J. Ionin, and the proposer. Part (b) also solved by N. Hodges (UK).

Complete Elliptic Integrals and Watson’s Integrals

12232 [2021, 178]. Proposed by Seán Stewart, Bomaderry, Australia. Prove

 1

0

 1

0

1
√
x(1− x)

√
y(1− y)

√
1− xy

dx dy =
1

4π

 ∞

0

e−t t−3/4 dt

4

.

Solution I by Tamas Wiandt, Rochester Institute of Technology, Rochester, NY. Let I denote

the integral on the left side of the desired equation. Substituting x = k2 and y = sin2 t , we

get

I = 4

 1

0

1
√
1− k2

 π/2

0

1


1− k2 sin2 t
dt dk = 4

 1

0

K(k) dk
√
1− k2

, (1)

where K(k) is the complete elliptic integral of the rst kind given by the formula

K(k) =

 π/2

0

dt


1− k2 sin2 t
.
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The last integral in (1) is given by equation 6.143 on page 632 of I. S. Gradshteyn and

I. M. Ryzhik (2007), Table of Integrals, Series, and Products, 7th ed., Burlington, MA:

Academic Press. Filling in its value, we obtain

I = 4


K(
√
2/2)

2
=



(1/4)
4

4π
=

1

4π

 ∞

0

e−t t−3/4 dt

4

.

Solution II by Lixing Han, University of Michigan, Flint, MI, and Xinjia Tang, Changzhou

University, Changzhou, China. Let I be as in Solution I. Substituting x = cos2 u,

y = cos2 v, we get

I = 4

 π/2

0

 π/2

0

du dv
√
1− cos2 u cos2 v

=

 π

0

 π

0

du dv
√
1− cos2 u cos2 v

. (2)

For |a| < 1, the substitution s = tan(t/2) yields

 π

0

dt

1− a cos t
=

2

1− a

 ∞

0

ds

1+ 1+a
1−a

s2
=

2
√
1− a2

tan−1





1+ a

1− a
s











∞

0

=
π

√
1− a2

.

Setting a = cos u cos v leads to

 π

0

dt

1− cos u cos v cos t
=

π
√
1− cos2 u cos2 v

.

Substituting into (2), we obtain

I =
1

π

 π

0

 π

0

 π

0

dt du dv

1− cos u cos v cos t
= π2I1,

where I1 is one of Watson’s triple integrals (see I. J. Zucker (2011), 70+ years of the

Watson Integrals, J. Stat. Phys. 145: 591–612, inp.nsk.su/∼silagadz/Watson Integral.pdf).

Filling in the known value of I1 gives the desired result.

Also solved by U. Abel & V. Kushnirevych (Germany), A. Berkane (Algeria), N. Bhandari (India), P. Bracken,

H. Chen, B. E. Davis, G. Fera (Italy), M. L. Glasser, J.-P. Grivaux (France), J. A. Grzesik, N. Hodges (UK),

Z. Lin (China), O. P. Lossers (Netherlands), M. Omarjee (France), K. Sarma (India), A. Stadler (Switzerland),

A. Stenger, R. Stong, R. Tauraso (Italy), M. Vowe (Switzerland), M. Wildon (UK), and the proposer.

Squarefree Sums

12236 [2021, 179]. Proposed by Navid Safaei, Sharif University of Technology, Tehran,

Iran. Let pk be the kth prime number, and let an =
n

k=1 pk . Prove that for n ∈ N every

positive integer less than an can be expressed as a sum of at most 2n distinct divisors of an.

Solution by Rory Molinari, Beverly Hills, MI. The divisors of an are exactly the positive

squarefree integers whose largest prime factor is no bigger than pn. We need the claim that

every positive integer r can be written as the sum of at most two distinct positive squarefree

integers.

It is easy to verify the claim for r ≤ 9, so assume r ≥ 10. Let A(r) be the set of positive

squarefree integers not greater than r . If r ∈ A(r), we are done. Otherwise, it is known

that |A(r)| ≥ 53r/88 for all r (see K. Rogers (1964), The Schnirelmann density of the

squarefree integers, Proc. Am. Math. Soc. 15(4): 515–516). Thus |A(r)| > 1 + r/2 for

r ≥ 10, and the pigeonhole principle implies that A(r) and {r − k : k ∈ A(r)} share at

least two elements. At least one of them is not r/2, yielding an expression of r as the sum

of two elements of A(r).
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To prove the problem statement, we use induction on n. The claim holds trivially for

n = 1. For n > 1, consider m such that 1 ≤ m < an. Write m as q · pn + r with 0 ≤
q < an−1 and 0 ≤ r < pn. By the claim, r is the sum of at most two positive squarefree

numbers. These numbers cannot have pn as a factor since r < pn, so they are factors of

an−1. By the induction hypothesis, q is the sum of at most 2(n− 1) distinct factors of an−1.

Hence, q · pn + r is the sum of at most 2(n− 1) distinct divisors of an, all of which are

multiples of pn, plus at most two distinct divisors of an−1. It follows that m is the sum of

at most 2n distinct divisors of an.

Editorial comment. The problem statement above corrects a typo in the original printing.

All solvers used similar proofs. Some used bounds such as

|A(r)| ≥ r − r

∞


k=1

p−2
k > .54r

in the proof of the initial claim.

Also solved by O. Geupel (Germany), N. Hodges (UK), M. Hulse (India), Y. J. Ionin, O. P. Lossers (Nether-

lands), C. Schacht, A. Stadler (Switzerland), M. Tang, R. Tauraso (Italy), and the proposer.

CLASSICS

C9. From the 2001 Putnam Competition, suggested by the editors. Can an arc of a parabola

inside a circle of radius 1 have a length greater than 4?

Flipping Coins Until They are All Heads

C8.Due to Leonard Räde, suggested by the editors. Start with n fair coins. Flip all of them.

After this rst ip, take all coins that show tails and ip them again. After the second ip,

take all coins that still show tails and ip them again. Repeat until all coins show heads.

Let qn be the probability that the last ip involved only a single coin. What is limn→∞ qn?

Solution. Let L = 1/ ln 4. Rough computation suggests that qn converges to L, but we

show that qn oscillates around L with an asymptotic amplitude of about 10−5, and so the

limit does not exist. Here at left we display the graph of qn for 1 ≤ n ≤ 20, illustrating

the apparent convergence. At right we graph the same sequence, zooming in and using a

logarithmic horizontal axis. That view reveals what appears to be a persistent asymptotic

oscillation.

To prove that the limit does not exist, take n ≥ 2, let C be one of the coins, and let k be a

positive integer. Consider the event that C shows heads for the rst time on ip k + 1, and

all other coins show heads earlier. This occurs only if C shows tails for each of the rst k

ips and then heads on ip k + 1. This has probability 2−(k+1). For each of the other n− 1

coins, it must not be the case that all of the rst k ips show tails. This has probability

1− 2−k . So the probability of the event is 2−(k+1)(1− 2−k)n−1.
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Because there are n possibilities for C, and because k can be any positive integer,

qn =

∞


k=1

n

2k+1



1−
1

2k

n−1

. (∗)

We show that the sequence q1, q2, . . . does not converge by showing that it has different

subsequences that converge but to different limits.

Let ck = (1− 2−k)2
k
. It is well known and easy to show that c1, c2, . . . is an increasing

sequence and limk→∞ ck = 1/e.

We have

qn =

∞


k=1

n

2k+1





1−
1

2k

2k
n/2k



1−
1

2k

−1

=

∞


k=1

n

2k+1
c
n/2k

k



2k

2k − 1



.

Now x an odd integer m, and let aj = qm2j for j ≥ 1. We have

aj =

∞


k=1

m2j

2k+1
c
m2j /2k

k



2k

2k − 1



=

∞


k=1−j

m

2k+1
c
m/2k

k+j



2k+j

2k+j − 1



.

The kth term of this series is bounded above by (m/2k)e−m/2k , whose sum over k from

−∞ to∞ is nite. Hence, by the dominated convergence theorem,

lim
j→∞

aj =

∞


k=−∞

lim
j→∞

m

2k+1
c
m/2k

k+j



2k+j

2k+j − 1



=

∞


k=−∞

m

2k+1
e−m/2k .

With m = 1, this last sum can be approximated by letting k run from −5 to 27, giving

an approximation of L + 4.58 · 10−6 for the sum, and the error in this approximation is

seen by a simple integration to be less than 10−8. Similarly, when m = 3, the last sum is

approximately L− 1.17 · 10−6, again with an error of less than 10−8. The distinct limits

prove that limn→∞ qn does not exist.

Editorial comment. One can approximate the sum in (∗) by
 ∞

0

n2−(x+1)(1− 2−x)n−1 dx,

which is L, independent of n. The error in this approximation does not vanish with n,

however.

The problem appeared in this Monthly [1991, 366; 1994, 78]. A version of the same

problem appeared almost a decade earlier in the 1982 Can. Math. Bull. as Problem P322

by George Szekeres, who asked whether

lim
n→∞

n


i=1

(−1)i−1 i

2i − 1



n

i



equals 1/ ln 2. It turns out that the nth term here is just 2qn in disguise, so the answer to the

Szekeres problem is negative.

In N. J. Calkin, E. R. Caneld, and H. S. Wilf (2000), Averaging sequences, deranged

mappings, and a problem of Lambert and Slater, J. Comb. Th., Ser. A 91(1–2): 171–190,

a general class of sequences is found to exhibit the oscillating sequence phenomenon. In

particular, they answer an open question in D. E. Lampert and P. J. Slater (1998), Parallel

knockouts in the complete graph, thisMonthly 105: 556–558.
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