## Practice Test 1 Solutions

1. Prove that for any natural $n$,

$$
1 \cdot 2+2 \cdot 3+3 \cdot 4+\cdots+n(n+1)=\frac{n(n+1)(n+2)}{3}
$$

Proof by Mathematical Induction.
Basis step: if $n=1$, then $1 \cdot 2=\frac{1 \cdot 2 \cdot 3}{3}$ is true.
Inductive step: assume the statement holds for $n=k$ for some natural number $k$. We will show that it holds for $n=k+1$. In other words, we assume that

$$
1 \cdot 2+2 \cdot 3+3 \cdot 4+\cdots+k(k+1)=\frac{k(k+1)(k+2)}{3}
$$

holds, and we will prove that

$$
1 \cdot 2+2 \cdot 3+3 \cdot 4+\cdots+(k+1)(k+2)=\frac{(k+1)(k+2)(k+3)}{3}
$$

holds.
We have: $1 \cdot 2+2 \cdot 3+3 \cdot 4+\cdots+(k+1)(k+2)=$
$(1 \cdot 2+2 \cdot 3+3 \cdot 4+\cdots+k(k+1))+(k+1)(k+2)=$
$\frac{k(k+1)(k+2)}{3}+(k+1)(k+2)=\frac{k(k+1)(k+2)+3(k+1)(k+2)}{3}=$
$\frac{(k+1)(k+2)(k+3)}{3}$.
2. Let $\left\{F_{0}, F_{1}, F_{2}, \ldots\right\}$ be the Fibonacci sequence defined by $F_{0}=0, F_{1}=1$, and $F_{n+1}=F_{n}+F_{n-1}, n \geq 1$. Prove that $F_{n-1}^{2}+F_{n}^{2}=F_{2 n-1}$
Proof by Strong Mathematical Induction.
Basis step. If $n=1$, then the identity says that $F_{0}^{2}+F_{1}^{2}=F_{1}^{2}$, or $0^{2}+1^{2}=1^{2}$ which is true.
Inductive step. Assume that it holds for all $1 \leq n \leq k$. Namely, we will use that it holds for $n=k$ and $n=k-1$, i.e.

$$
F_{k-1}^{2}+F_{k}^{2}=F_{2 k-1}
$$

and $F_{(k-1)-1}^{2}+F_{(k-1)}^{2}=F_{2(k-1)-1}$, or equivalently,

$$
F_{k-2}^{2}+F_{k-1}^{2}=F_{2 k-3} .
$$

We want to prove that it holds for $n=k+1$, i.e. $F_{(k+1)-1}^{2}+F_{k+1}^{2}=F_{2(k+1)-1}$, or, equivalently,

$$
F_{k}^{2}+F_{k+1}^{2}=F_{2 k+1} .
$$

It may be easier here to work from the right hand side: $F_{2 k+1}=F_{2 k}+F_{2 k-1}=$ $F_{2 k-1}+F_{2 k-2}+F_{2 k-1}=2 F_{2 k-1}+F_{2 k-2}=2 F_{2 k-1}+F_{2 k-1}-F_{2 k-3}=3 F_{2 k-1}-$ $F_{2 k-3}=3\left(F_{k-1}^{2}+F_{k}^{2}\right)-\left(F_{k-2}^{2}+F_{k-1}^{2}\right)=3 F_{k-1}^{2}+3 F_{k}^{2}-F_{k-2}^{2}-F_{k-1}^{2}=2 F_{k-1}^{2}+$ $3 F_{k}^{2}-F_{k-2}^{2}=2 F_{k-1}^{2}+3 F_{k}^{2}-\left(F_{k}-F_{k-1}\right)^{2}=2 F_{k-1}^{2}+3 F_{k}^{2}-F_{k}^{2}+2 F_{k} F_{k-1}-$ $F_{k-1}^{2}=F_{k-1}^{2}+2 F_{k}^{2}+2 F_{k} F_{k-1}=F_{k-1}\left(F_{k-1}+F_{k}\right)+F_{k}\left(F_{k}+F_{k-1}\right)+F_{k}^{2}=$ $F_{k-1} F_{k+1}+F_{k} F_{k+1}+F_{k}^{2}=\left(F_{k-1}+F_{k}\right) F_{k+1}+F_{k}^{2}=F_{k}^{2}+F_{k+1}^{2}$.
3. Kevin is paid every other week on Friday. Show that every year, in some month he is paid three times.
Solution. Since there are 52 whole weeks in a year, Kevin is paid at least 26 times a year. Since there are 12 months, by generalized Dirichlet's box principle, at least one month will contain 3 pay days.
4. Let $f$ be a one-to-one function from $X=\{1,2,3,4,5\}$ onto $X$. Let $f^{k}=$ $\underbrace{f \circ f \circ \cdots \circ f}_{k \times}$ denote the $k$-fold composition of $f$ with itself. Show that for some positive integer $m, f^{m}(x)=x$ for all $x \in X$.
Proof. Note that for each $k$, the function $f^{k}$ is a permutation of the set $X$ and there are $5!=120$ different permutations of the set $X$. Consider $f$, $f^{2}, \ldots, f^{121}$. By Dirichlet's box principle, at least two of these are equal, i.e. $f^{a}=f^{b}$ for some $a<b, a, b \in$. Then $f^{b-a}$ is the identity function, i.e. $f^{b-a}(x)=x$ for all $x \in X$.
5. Six integer numbers, $a_{1}, a_{2}, a_{3}, a_{4}, a_{5}$, and $a_{6}$ are chosen randomly. Prove that $\prod_{1 \leq i<j \leq 6}\left(a_{i}-a_{j}\right)$ is divisible by 10 .
Proof. There are two possible remainders ( 0 and 1 ) upon division by 2 . Since there are more numbers than possible remainders, by Dirichlet's box principle at least two numbers have the same remainder. Then their difference is divisible by 2 . Therefore the product of all differences is divisible by 2 . There are five possible remainders $(0,1,2,3,4)$ upon division by 5 . Since there are more numbers than possible remainders, by Dirichlet's box principle at least two numbers have the same remainder. Then their difference is divisible by 5 . Therefore the product of all differences is divisible by 5 .
Since the product is divisible by both 2 and 5 and these are distinct primes, the product is divisible by 10 .
6. Show that $2^{457}+3^{457}$ is divisible by 5 .

Poof. By Theorem 4.22, since the exponent is odd, the given expression factors as $(2+3)$ times an integer. Therefore, it is divisible by $2+3$, i.e. divsible by 5 .
7. Solve for $x$ : $|x+1|+5-x^{2} \geq 0$

Case I. $x+1 \geq 0$. Then $|x+1|=x+1$, so the inequality becomes

$$
\begin{aligned}
x+1+5-x^{2} & \geq 0 \\
x+6-x^{2} & \geq 0 \\
x^{2}-x-6 & \leq 0 \\
(x-3)(x+2) & \leq 0 \\
-2 \leq x & \leq 3 .
\end{aligned}
$$

The condition $x+1 \geq 0$ implies $x \geq-1$, so the solution set in this case is $[-1,3]$.
Case II. $x+1<0$. Then $|x+1|=-(x+1)$, so the inequality becomes

$$
\begin{aligned}
-(x+1)+5-x^{2} & \geq 0 \\
-x+4-x^{2} & \geq 0 \\
x^{2}+x-4 & \leq 0 \\
\left(x-\frac{-1+\sqrt{17}}{2}\right)\left(x-\frac{-1-\sqrt{17}}{2}\right) & \leq 0 \\
\frac{-1-\sqrt{17}}{2} \leq x & \leq \frac{-1+\sqrt{17}}{2} .
\end{aligned}
$$

The condition $x+1<0$ implies $x<-1$, so the solution set in this case is $\left[\frac{-1-\sqrt{17}}{2},-1\right)$.
Answer: $\left[\frac{-1-\sqrt{17}}{2}, 3\right]$.

