## 2014 <br> LEAP FROG RELAY GRADES 11-12 PART I

No calculators allowed
Correct Answer $=4$, Incorrect Answer $=-1$, Blank $=0$
(1) Let $r$ be the remainder of $1+2^{2}+3^{3}+4^{4}+5^{5}+6^{6}+7^{7}+8^{8}+9^{9}+10^{10}$ when divided by 3 . Let $s$ be the sum of the last digits of each of the terms of the sum above. What is $r+s$ ?
(a) 47
(b) 49
(c) 45
(d) 42
(e) None of the above
(2) Let

$$
S=\sqrt{1}+\sqrt{1+2^{3}}+\sqrt{1+2^{3}+3^{3}}+\cdots+\sqrt{1+2^{3}+3^{3}+\cdots+2014^{3}}
$$

Then,
(a) $S=\binom{2016}{3}$
(b) $S=\binom{2014}{3}$
(c) $S=\binom{2016}{6}$
(d) $S=\binom{2013}{6}$
(e) None of the above

$$
\text { Where, }\binom{n}{k}=\frac{n!}{k!(n-k)!} \text {. }
$$

(3) The square $A B C D$ has sides of length 2 . Point $E$ is the midpoint of edge $A B$. Point $F$ is the intersection of lines $A C$ and $D E$. Line $F G$ is parallel to line $A B$. The area of $\triangle E F G$ is:

(a) $\frac{2}{3}$
(b) $\frac{1}{3}$
(c) $\frac{2}{9}$
(d) $\frac{4}{9}$
(e) None of the above
(4) An isosceles triangle $\triangle A B C$ has equal angles $B=C$. Twelve copies of $\triangle A B C$ are arranged around a common vertex without gaps or overlaps as shown. (The common vertex is surrounded by 10 angles equal to $A$ and 2 angles equal to $B$.) Find the measure of $A$ in degrees.

(a) $15^{\circ}$
(b) $25^{\circ}$
(c) $18^{\circ}$
(d) $20^{\circ}$
(e) None of the above
(5) Let $S=\{1,4,9,16,25, \ldots\}$ be the set of squares of positive integers. Let $t \in S$ be such that $t-76 \in S$. What is $76 t$ ?
(a) 30,400
(b) 27,436
(c) 24,624
(d) 33,516
(e) None of the above
(6) Given that $2^{60}=1,152,921,504,606,846,976$, find the first four digits (reading left to right) of $2^{61}$ and $2^{59}$, then add these 8 digits up to get:
(a) 35
(b) 30
(c) 32
(d) 28
(e) None of the above
(7) Given that $a$ and $f$ are integers between 0 and 9 such that $a^{5}+1=f \cdot 1111$, find $a+f$.
(a) 15
(b) 13
(c) 12
(d) 10
(e) None of the above
(8) Three solutions of the equation $m!(m+1)!=n$ ! are $(m, n)=(0,0),(m, n)=$ $(0,1)$, and $(m, n)=(1,2)$. There is a unique fourth solution to this equation so that $0 \leq n \leq 10$ and $0 \leq m \leq 10$. For that solution, find $n-m$.
(a) 6
(b) 5
(c) 3
(d) 4
(e) None of the above
(9) Given that $2+\sqrt{3}$ is one of the solutions of the equation

$$
x^{4}-14 x^{3}+54 x^{2}-62 x+13=0
$$

how many complex solutions does this equation have?
(a) 0
(b) 1
(c) 2
(d) 3
(e) 4
(10) The adjacent figure has six non-overlapping congruent isosceles triangles. In each triangle the equal sides are 2 units and the base is 1 unit. Find the distance from A to B.

(a) $\sqrt{19}$
(b) $\sqrt{17}$
(c) $3 \sqrt{2}$
(d) $2 \sqrt{5}$
(e) None of the above

