2014
 LEAP FROG RELAY GRADES 11-12
 PART I SOLUTIONS

No calculators allowed
Correct Answer $=4$, Incorrect Answer $=-1$, Blank $=0$
(1) Let r be the remainder of $1+2^{2}+3^{3}+4^{4}+5^{5}+6^{6}+7^{7}+8^{8}+9^{9}+10^{10}$ when divided by 3 . Let s be the sum of the last digits of each of the terms o
(a) 47
(b) 49
(c) 45
(d) 42
(e) None of the above

Solution: (b) We first eliminate the multiples of 3 from the given sum, as they will not contribute to the remainder of the sum, and get $1+2^{2}$ In order to find s we find, by hand, the last digits of the first few terms in the sum. They are: $1,4,7,6,5,6$ (the last two because every power of 5 ends ins $=1+4+7+6+5+6+3+6+9+0=47$.Thus $r+s=2+47=49$.

Let

$$
S=\sqrt{1}+\sqrt{1+2^{3}}+\sqrt{1+2^{3}+3^{3}}+\cdots+\sqrt{1+2^{3}+3^{3}+\cdots+2014^{3}}
$$

Then,
(a) $S=\binom{2016}{3}$
(b) $S=\binom{2014}{3}$
(c) $S=\binom{2016}{6}$
(d) $S=\binom{2013}{6}$
(e) None of the above

Here, $\binom{n}{k}=\frac{n!}{k!(n-k)!}$.
Solution: (a) Use $\sum_{k=1}^{n} k^{3}=\left(\sum_{k=1}^{n} k\right)^{2}=\left(\frac{n(n+1)}{2}\right)^{2}$ to get

$$
\begin{aligned}
S=\sum_{n=1}^{2014} \frac{n(n+1)}{2} & =\frac{1}{2} \sum_{n=1}^{2014}\left(n^{2}+n\right) \\
& =\frac{1}{2}\left(\sum_{n=1}^{2014} n^{2}+\sum_{n=1}^{2014} n\right) \\
& =\frac{1}{2}\left(\frac{2014(2015)(2 \cdot 2014+1)}{6}+\frac{2014(2015)}{2}\right) \\
& =\frac{2014(2015)}{4}\left(\frac{2 \cdot 2014+1}{3}+1\right) \\
& =\frac{2014(2015)}{4}\left(\frac{2 \cdot 2014+4}{3}\right) \\
& =\frac{2014(2015)}{2}\left(\frac{2016}{3}\right) \\
& =\binom{2016}{3}
\end{aligned}
$$

The square $A B C D$ has sides of length 2. Point E is the midpoint of edge $A B$. Point F is the intersection of lines $A C$ and $D E$. Line $F G$ is parallel to line $A B$. The area of $\triangle E F G$ is:

(a) $\frac{2}{3}$
(b) $\frac{1}{3}$
(c) $\frac{2}{9}$
(d) $\frac{4}{9}$
(e) None of the above

Solution: (c) First notice that $A E$ has length 1 , and thus $\triangle A C E$ has base 1 and height 2 , hence its area is 1 . Next we use that $\triangle A E F \sim \triangle C D F$, and that $A E$ has half the length of $C D$, to get that $A F$ must have half the length of $C F$. Also because $F G$ is parallel to $A E$, we must have that $E G$ is half the length of $C G$.
Now consider $\triangle A C E$ with $A C$ as its base. By comparing the ratio of $A F$ and $C F$, we conclude that the area of $\triangle C F E$ is $2 / 3$ of the area of $\triangle A C E$. Hence the area of $\triangle C F E$ is $2 / 3$.
Finally, consider $\triangle C F E$ with $E C$ as its base. By comparing the ratio of $E G$ and $C G$, we conclude that the area of $\triangle E F G$ is $1 / 3$ of the area of $\triangle C F E$. Therefore, the area of $\triangle E F G$ is $(1 / 3)(2 / 3)=2 / 9$.

An isosceles triangle $\triangle A B C$ has equal angles $B=C$. Twelve copies of $\triangle A B C$ are arranged around a common vertex without gaps or overlaps as shown. (The common vertex is surrounded by 10 angles equal to A and 2 angles equal to B.) Find the measure of A in degrees.

(a) 15°
(b) 25°
(c) 18°
(d) 20°
(e) None of the above

Solution: (d) Recall that the sum of the angles in a triangle is 180°, and that the angle measure around a point is 360°. This tells us that $\angle A+2 \angle B=180^{\circ}$ and that $10 \angle A+2 \angle B=360^{\circ}$. These two equations combine to imply that $9 \angle A=180^{\circ}$, therefore $\angle A=20^{\circ}$.

Let $S=\{1,4,9,16,25, \ldots\}$ be the set of squares of positive integers. Let $t \in S$ be such that $t-76 \in S$. What is $76 t$?
(a) 30,400
(b) 27, 436
(c) 24,624
(d) 33,516
(e) None of the above

Solution: (a) We let $t=x^{2}$, and so we want to solve $x^{2}-76=y^{2}$. We rewrite this equation as $76=x^{2}-y^{2}=(x-y)(x+y)$. We note that $(x-y)$ and $(x+y)$ have the same parity (they are either both even or both odd), and since their product is even, it follows that $(x-y)$ and $(x+y)$ must be both even.
Since 76 factors as $1 \cdot 76,2 \cdot 38$, or $4 \cdot 19$ then the only factorization that could be matched to $(x-y)(x+y)$ is $2 \cdot 38$, because of parity of the factors. It follows that $x=20$ and $y=18$. Hence $t=400$, and thus $76 t=30,400$.

Given that $2^{60}=1,152,921,504,606,846,976$, find the first four digits (reading left to right) of 2^{61} and 2^{59}, then add these 8 digits up to get:
(a) 35
(b) 30
(c) 32
(d) 28
(e) None of the above

Solution: (c) When multiplying 2^{60} by 2 , the digit of ' 9 ' in the $5^{\text {th }}$ place (from the left) will cause a ' 1 ' to carry over to be added to the digit in the $4^{\text {th }}$ place from the left. So, the first four digits of 2^{61} are $2 \cdot(1152)+1=2305$. Similarly, when dividing 2^{60} by 2 , we start from the left, obtaining the digits 5764 . It follows that the answer is $2+3+0+5+5+7+6+4=32$.

Given that a and f are integers between 0 and 9 such that $a^{5}+1=f \cdot 1111$, find $a+f$.
(a) 15
(b) 13
(c) 12
(d) 10
(e) None of the above

Solution: (b) The only $5^{\text {th }}$ powers of the given digits that produce 4 digit numbers are $4^{5}=16 \cdot 64=1024,5^{5}=25 \cdot 125=3125$, and $6^{5}=36 \cdot 216=7776$. Note that $6^{5}+1=7777=7 \cdot 1111$, and that $1024+1=1025$ and $3125+1=3126$ are not divisible by 1111, we have that $a=6$ and $f=7$. Therefore, $a+f=6+7=13$.

Three solutions of the equation $m!(m+1)!=n!$ are $(m, n)=(0,0),(m, n)=(0,1)$, and $(m, n)=(1,2)$. There is a unique fourth solution to this equation so that $0 \leq n \leq 10$ and $0 \leq m \leq 10$. For that solution, find $n-m$.
(a) 6
(b) 5
(c) 3
(d) 4
(e) None of the above

Solution: (d) We observe first that $m+1<n$, since otherwise $(m+1)!\geq n$!. Now note that every prime number dividing the right-hand side of the equality must divide the left-hand side, as well. Thus, if there were a prime number p such that $m+1<p \leq n$ then p would divide the right hand side but not the left hand side. In particular n cannot be prime. So, the only possible solutions to consider are

$$
(m, n)=(2,4),(4,6),(6,8),(6,9),(7,9),(6,10),(7,10),(8,10)
$$

We check these pairs and find out that $(m, n)=(6,10)$ works. Therefore, the answer is $m-n=10-6=4$.

Given that $2+\sqrt{3}$ is one of the solutions of the equation

$$
x^{4}-14 x^{3}+54 x^{2}-62 x+13=0
$$

how many complex solutions does this equation have?
(a) 0
(b) 1
(c) 2
(d) 3
(e) 4

Solution: (a) Since we know $2+\sqrt{3}$ is one of the solutions of the equation (which has only integral coefficients) then so is $2-\sqrt{3}$. Then we have

$$
[x-(2+\sqrt{3})][x-(2-\sqrt{3})]=(x-2)^{2}-(\sqrt{3})^{2}=x^{2}-4 x+1
$$

We now divide $x^{4}-14 x^{3}+54 x^{2}-62 x+13$ by $x^{2}-4 x+1$ getting $x^{2}-10 x+13$. The discriminant of this quadratic equation is $(10)^{2}-4 \cdot 13=58$, which is positive, and thus it does not have any complex roots.

The adjacent figure has six non-overlapping congruent isosceles triangles. In each triangle the equal sides are 2 units and the base is 1 unit. Find the distance from A to B.

(a) $\sqrt{19}$
(b) $\sqrt{17}$
(c) $3 \sqrt{2}$
(d) $2 \sqrt{5}$
(e) None of the above

Solution: (a) We label the vertices of the parallelogram (composed of 4 triangles) in the figure as $O P Q R$. If O is the origin $(0,0)$, then $|O P|=2$, so $P=(2,0)$. Therefore the x-coordinate of R is $1 / 2$, and the altitude at R has length y where $y^{2}+(1 / 2)^{2}=4$, so $y=\sqrt{4-1 / 4}=\sqrt{15} / 2$ and $R=(1 / 2, \sqrt{15} / 2)$. Then M, the midpoint of $O R$ has coordinates $(1 / 4, \sqrt{15} / 4)$. By symmetry, since $\angle P O B \cong \angle P O R$, we see that point B is symmetric with M in segment $O P$, so $B=(1 / 4,-\sqrt{15} / 4)$. By a similar argument, the coordinates of point A are $(9 / 4,3 \sqrt{15} / 4)$. This gives us the distance $|A B|$ as

$$
|A B|^{2}=\left(\frac{9}{4}-\frac{1}{4}\right)^{2}+\left(\frac{3 \sqrt{15}}{4}+\frac{\sqrt{15}}{4}\right)^{2}=4+15=19 .
$$

