## MATH 149

Spring 2016

## Test 2

Name: $\qquad$

- This test is take-home.
- Allowed time: 1 hour 15 min .
- Books, notes, calculators, etc. are allowed.
- Please show all your work.
- Turn in via email (mnogin@csufresno.edu) by 11:59 PM on April 13.

1. (15\%) Explain, on a level accessible to an Algebra I student, why a decimal represents a rational number if and only if it is either terminating or repeating. (Your explanation may be informal, but should be complete/general. An example may be used to illustrate an idea, but just an example is not sufficient.)
2. $(20 \%)$
(a) Give an example of a set (of objects familiar to high school students) and an operation for which commutativity does not hold. (Provide a proof.)
(b) Does associativity hold for the above operation? (State a yes/no answer and provide a proof.)
3. $(20 \%)$ For each of the following statement, determine whether it is true or false. (Provide a proof.)
(a) The sum of two positive irrational numbers is always irrational.
(b) The infinite decimal $0.123456789101112131415 \ldots$ (whose digits are those of all natural numbers) represents a rational number.
4. $(15 \%)$ Compute: $(1+i)^{20}$.
5. (30\%) Which of the following statements are true, false, or incorrectly worded? Provide brief justifications for your answers. For those that are incorrectly worded, suggest a correction and determine their truth values. For those that are false, modify them to make true.

- The graph of a function $f: \mathbb{R} \rightarrow \mathbb{R}$ can have any number of horizontal asymptotes, from 0 to infinitely many.
- The point $(3,4)$ lies on the graph of the function $x^{2}+y^{2}=25$.
- Every function $f: \mathbb{R} \rightarrow \mathbb{R}$ has exactly one $y$-intercept.
- The pair $(-2,-4)$ is a solution of the function $f(x)=x^{2}+1$.

6. Optional (for extra credit, $10 \%$ ):

Is the number $\frac{1}{20+\sqrt{15}}+\frac{1}{20-\sqrt{15}}$ rational or irrational?

