Quadratic functions and equations

Quadratic formula. The roots of $a x^{2}+b x+c=0$ can be found by

$$
x_{1,2}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Example 1. For what values of p does $4 x^{2}+4 p x+4-3 p=0$ have two distinct real roots?

Solution. A quadratic equation has two distinct real roots whenever the discriminant $D=b^{2}-4 a c$ is positive. Thus we need

$$
\begin{aligned}
(4 p)^{2}-4 \cdot 4(4-3 p) & >0 \\
16 p^{2}-16(4-3 p) & >0 \\
p^{2}-(4-3 p) & >0 \\
p^{2}+3 p-4 & >0 \\
(p+4)(p-1) & >0
\end{aligned}
$$

So $p<-4$ or $p>1$.

Vieta's formulas.

- If $x^{2}+b x+c=0$ has roots (real or complex) r and s, then the polynomial on the left can be factored as $(x-r)(x-s)$. Since $(x-r)(x-s)=x^{2}-(r+s) x+r s$, we have

$$
\begin{aligned}
r+s & =-b \\
r s & =c .
\end{aligned}
$$

- If $a x^{2}+b x+c=0$ has roots (real or complex) r and s, then we can write the equation in the monic form by dividing by a

$$
x^{2}+\frac{b}{a} x+\frac{c}{a}=0
$$

therefore

$$
\begin{aligned}
r+s & =-\frac{b}{a} \\
r s & =\frac{c}{a}
\end{aligned}
$$

Example 2. (2002 AMC 12A \#12) Both roots of the quadratic equation $x^{2}-63 x+k=0$ are prime numbers. Find the number of possible values of k.

Solution. If the roots are r and s, we have $r+s=63$ and $r s=k$. The first equation implies that $\{r, s\}=\{2,61\}$, so $k=r s=2 \cdot 61=122$, thus there is only one such value of k.

More observations about quadratic functions and their graphs.

When the equation $a x^{2}+b x+c=0$ has two real roots, we see from the quadratic formula that the value $-\frac{b}{2 a}$ is their average, therefore it is the x-coordinate of the vertex of the parabola $y=a x^{2}+b x+c$.
It can be shown that the x-coordinate of the vertex of the parabola $y=a x^{2}+b x+c$ is always $-\frac{b}{2 a}$, even if the roots (also called zeros of the function) are not real (if the discriminant $D=b^{2}-4 a c$ is negative).

Also, for $f(x)=a x^{2}+b x+c$,

$$
\begin{aligned}
f(0) & =c \\
f(1) & =a+b+c \\
f(-1) & =a-b+c
\end{aligned}
$$

(Note also that these formulas can be generalized for polynomials of any degree.)
Example 3. A small fragment of the curve $y=x^{2}+b x+c$ is shown below (if it seems to pass through a certain grid point, assume that it does). Find the value of $b+c$.

Solution. We see from the graph that $y(1)=3$, so $1+b+c=3$. Therefore $b+c=2$.

Fresno Math Circle

 Grades 8-9
Quadratic functions and equations

1. Find all values of a for which the equation $4 x^{2}+a x+8 x+9=0$ has only one solution for x.
2. For how many real numbers a does the quadratic equation $x^{2}+a x+123=0$ have two integer roots?
3. Let a, b, c, and d be four distinct one-digit numbers. What is the maximum possible value of the sum of the roots of the equation $(x-a)(x-b)+(x-c)(x-d)=0$?
4. Suppose $p(x)$ is a polynomial of degree 2 , has roots 3 and -5 , and $p(0)=-60$. What is the coefficient of x in $p(x)$?
5. (2007 AMC 12A \#21) The sum of the zeros, the product of the zeros, and the sum of the coefficients of the function $f(x)=a x^{2}+b x+c$ are equal. Their common value must also be which of the following?
(a) the coefficient of x^{2}
(b) the coefficient of x
(c) the y-intercept of the graph $y=f(x)$
(d) one of the x-intercepts of the graph of $y=f(x)$
(e) the mean of the x-intercepts of the graph of $y=f(x)$
6. (2005 AMC 10B \#16, AMC 12B \#12) The quadratic equation $x^{2}+m x+n=0$ has roots twice those of $x^{2}+p x+m=0$, and none of m, n, and p is zero. What is the value of n / p ?
7. (2006 AMC 10B \#14) Let a and b be the roots of the equation $x^{2}-m x+2=0$. Suppose that $a+\frac{1}{b}$ and $b+\frac{1}{a}$ are the roots of the equation $x^{2}-p x+q=0$. What is q ?
8. (2003 AMC 10A \#18) What is the sum of the reciprocals of the roots of the equation $\frac{2003}{2004} x+1+\frac{1}{x}=0$?
9. Let us take another look at the quadratic function $f(x)=4 x^{2}+4 p x+4-3 p$. Suppose that for every real value of p, we graph the parabola $y=4 x^{2}+4 p x+4-3 p$, and mark its vertex. What curve do these vertices form?
10. If α and β are solutions of $x^{2}+p x+q=0$, find $\alpha^{2}+\beta^{2}$ in terms of p and q.
11. A quadratic polynomial f satisfies $f(x) \geq 2$ for all $x, f(2)=2$, and $f(3)=4$. What is $f(5)$?
12. (2015 AMC 10A \#23) The zeroes of the function $f(x)=x^{2}-a x+2 a$ are integers. What is the sum of the possible values of a ?
13. (2011 AMC 10B \#19) What is the product of all the roots of the equation

$$
\sqrt{5|x|+8}=\sqrt{x^{2}-16} ?
$$

14. (2014 AMC 10B $\# 20$) For how many integers x is the number $x^{4}-51 x^{2}+50$ negative?
15. (2013 AMC 10B \#19) The real numbers c, b, a form an arithmetic sequence with

$$
a \geq b \geq c \geq 0
$$

The quadratic $a x^{2}+b x+c$ has exactly one root. What is this root?
16. (1977 Canadian MO) If $f(x)=x^{2}+x$, prove that the equation $4 f(a)=f(b)$ has no solutions in positive integers a and b.
17. Suppose that the absolute values of the real roots of

$$
x^{2}+A x+B=0
$$

and

$$
x^{2}+C x+D=0
$$

are less than 1. Prove that the absolute values of the real roots (if there are any) of

$$
x^{2}+\frac{A+C}{2} x+\frac{B+D}{2}=0
$$

are also less than 1.
18. (2011 AIME \#6) Suppose that a parabola has vertex $\left(\frac{1}{4},-\frac{9}{8}\right)$ and equation

$$
y=a x^{2}+b x+c,
$$

where $a>0$ and $a+b+c$ is an integer. Find the minimum possible value of a.
19. (2020 AMC 12A \#25) There exists a real number a such that the sum of all real numbers x satisfying

$$
\lfloor x\rfloor \cdot\{x\}=a \cdot x^{2}
$$

is 420 , where $\lfloor x\rfloor$ denotes the greatest integer less than or equal to x and $\{x\}=x-\lfloor x\rfloor$ denotes the fractional part of x. What is the value of a ?

Instructor Notes

Quadratic functions and equations: answers and solutions

1. The quadratic equation has only one solution when the discriminant

$$
D=(a+8)^{2}-4 \cdot 4 \cdot 9=0
$$

that is, $a+8= \pm 12$. We have two solutions: $a=4$ and $a=-20$.
2. The product of the roots is 123 . Since the prime factorization of 123 is $3 \cdot 41$, the two roots can be 3 and 41 , or -3 and -41 , or 1 and 123 , or -1 and -123 . The coefficient a is the additive inverse of the sum of the roots, so there are 4 possible values $(-44,44$, -124 , and 124 , respectively).
3. Expanding the products and combining like terms we have

$$
2 x^{2}-(a+b+c+d) x+(a b+c d)=0
$$

The sum of the roots is $\frac{a+b+c+d}{2}$, so we need to find the maximum possible value of this expression given that a, b, c, and d be four distinct one-digit numbers. The largest possible four distinct one-digit numbers are $9,8,7$, and 6 , so the largest possible value is $\frac{9+8+7+6}{2}=15$.
4. Solution 1. Let $p(x)=a x^{2}+b x+c$. From the given information we conclude that

$$
\begin{aligned}
-\frac{b}{a} & =3+(-5)=-2, \\
\frac{c}{a} & =3(-5)=-15 \\
c & =p(0)=-60
\end{aligned}
$$

It follows that $a=\frac{c}{-15}=4$, and the coefficient of x is $b=2 a=8$.
Solution 2. Since 3 and -5 are roots of the polynomial, it can be factored as

$$
p(x)=a(x-3)(x+5)
$$

Then $p(0)=-15 a$, so $a=4$. Then $p(x)=4(x-3)(x+5)=4\left(x^{2}+2 x-15\right)=$ $4 x^{2}+8 x-60$, so the coefficient of x is 8 .
5. The sum of the zeros (roots) is $-\frac{b}{a}$, their product is $\frac{c}{a}$, and the sum of the coefficients is $a+b+c$. So we have

$$
-\frac{b}{a}=\frac{c}{a}=a+b+c
$$

It follows that $c=-b$, and thus

$$
a+b+c=a,
$$

thus their common value is equal to the coefficient of x^{2}.
6. If the roots of $x^{2}+m x+n=0$ are twice those of $x^{2}+p x+m=0$, then the sum of the roots of the first equation, $-m$, is also twice the sum of the roots of the second equation, $-p$, so we have $-m=2(-p)$, that is, $m=2 p$. Also, the product of the roots of the first equation, n, is four times larger than the product of the roots of the second equation, m, so $n=4 m$. It follows that $n=4 m=8 p$, so $n / p=8$.
7. From the first equation we know that $a b=2$. From the second equation,

$$
q=\left(a+\frac{1}{b}\right)\left(b+\frac{1}{a}\right)=\frac{a b+1}{b} \cdot \frac{a b+1}{a}=\frac{(a b+1)^{2}}{a b}=\frac{9}{2} .
$$

Equivalently,

$$
q=\left(a+\frac{1}{b}\right)\left(b+\frac{1}{a}\right)=a b+2+\frac{1}{a b}=\frac{9}{2} .
$$

8. Solution 1. First let us multiply the equation by x to obtain a quadratic equation:

$$
\frac{2003}{2004} x^{2}+x+1=0
$$

Let r and s be its roots. Then $r+s=-\frac{2004}{2003}$ and $r s=\frac{2004}{2003}$. The sum of their reciprocals is

$$
\frac{1}{r}+\frac{1}{s}=\frac{r+s}{r s}=-1
$$

Solution 2. The reciprocals of the roots of an equation are the roots of the equation obtained by replacing each x with $\frac{1}{x}$ in the original equation. So, the sum we want to find is just the sum of the roots of the equation $\frac{2003}{2004} \cdot \frac{1}{x}+1+x=0$. Multiplying this equation by x gives a quadratic equation:

$$
x^{2}+x+\frac{2003}{2004}=0
$$

and the sum of its roots is -1 .
9. The vertex of the parabola has x-coordinate $-\frac{b}{2 a}=-\frac{4 p}{8}=-\frac{p}{2}$ and y-coordinate $y\left(-\frac{p}{2}\right)=4\left(-\frac{p}{2}\right)^{2}+4 p\left(-\frac{p}{2}\right)+4-3 p=4\left(-\frac{p}{2}\right)^{2}-8\left(-\frac{p}{2}\right)^{2}-3 p+4=-4\left(-\frac{p}{2}\right)^{2}+6\left(-\frac{p}{2}\right)+4$, so the vertex lies on the parabola $y=-4 x^{2}+6 x+4$.
Remark. We recommend graphing both quadratics, $y=4 x^{2}+4 p x+4-3 x$ with a slider for p, e.g. from -10 to 10 , and $y=-4 x^{2}+6 x+4$. As we change the value of p, we see that the first parabola moves, but its vertex is always on the second parabola.
10. If α and β are solutions of $x^{2}+p x+q=0$, we have $\alpha+\beta=-p$ and $\alpha \beta=q$. Then $\alpha^{2}+\beta^{2}=(\alpha+\beta)^{2}-2 \alpha \beta=(-p)^{2}-2 q=p^{2}-2 q$.
11. Solution 1. If $f(x) \geq 2$ for all x and $f(2)=2$, then the vertex of the parabola is at $(2,2)$, so $f(x)=a(x-2)^{2}+2$. Then $4=f(3)=a+2$, so $a=2$, and thus $f(x)=2(x-2)^{2}+2$. Then $f(5)=2 \cdot 3^{2}+2=20$.

Solution 2. Let $f(x)=a x^{2}+b x+c$. The first step is the same as in Solution 1: since $f(x) \geq 2$ for all x and $f(2)=2$, then the vertex of the parabola is at (2,2). It follows that

$$
\begin{aligned}
-\frac{b}{2 a} & =2 \\
4 a+2 b+c & =f(2)=2 \\
9 a+3 b+c & =f(3)=4 .
\end{aligned}
$$

Subtracting the second equation from the third we get $5 a+b=2$. From the first equation $b=-4 a$, therefore $a=2$. Then $b=-8$ and $c=10$. Thus $f(x)=2 x^{2}-8 x+10$ and then $f(5)=20$.
12. Let r and s be the zeros, then $r+s=a$ and $r s=2 a$. Then

$$
\begin{aligned}
2 r+2 s & =r s \\
r s-2 r-2 s & =0 \\
r s-2 r-2 s+4 & =4 \\
(r-2)(s-2) & =4
\end{aligned}
$$

The right-hand side, 4 , has four possible factorizations: $2 \cdot 2,(-2) \cdot(-2), 1 \cdot 4$, and $(-1) \cdot(-4)$, so this gives four possible (unordered) pairs of roots r and $s: 4$ and 4,0 and 0,3 and 6,1 and -2 . Thus the possible values of a are $8,0,9$, and -1 . Their sum is $8+0+9+(-1)=16$.
13. Let us square both sides of the equation:

$$
\begin{aligned}
5|x|+8 & =x^{2}-16 \\
x^{2}-5|x|-24 & =0
\end{aligned}
$$

If $x \geq 0$, then we have

$$
\begin{aligned}
x^{2}-5 x-24 & =0 \\
(x-8)(x+3) & =0
\end{aligned}
$$

Only the root $x=8$ satisfies the condition $x \geq 0$ (and thus the original equation). If If $x<0$, then we have

$$
\begin{aligned}
x^{2}+5 x-24 & =0 \\
(x+8)(x-3) & =0
\end{aligned}
$$

Only the root $x=-8$ satisfies the condition $x<0$ (and thus the original equation). Thus the product of all the roots of the equation $\sqrt{5|x|+8}=\sqrt{x^{2}-16}$ is -64 .
14. Observe that $x^{4}-51 x^{2}+50=\left(x^{2}-50\right)\left(x^{2}-1\right)$. This value is negative when $1<x^{2}<50$, that is, $2 \leq|x| \leq 7$. There are six positive and six negative values, so 12 values total.
15. Since c, b, a form an arithmetic sequence with $a \geq b \geq c \geq 0,2 b=a+c$, so $c=2 b-a$. If the quadratic $a x^{2}+b x+c$ has exactly one root, then $b^{2}-4 a c=0$. Substituting $2 b-a$ for c, we have $b^{2}-4 a(2 b-a)=0$, or, equivalently, $b^{2}-8 a b+4 a^{2}=0$. Then $\left(\frac{b}{a}\right)^{2}-8 \cdot \frac{b}{a}+4=0$, so $\frac{b}{a}=4 \pm 2 \sqrt{3}$. Since $a>b>0$, we have $\frac{b}{a}<1$, so $\frac{b}{a}=4-2 \sqrt{3}$. Then the only root is $-\frac{b}{2 a}=-2+\sqrt{3}$.
16. Let us rewrite the given equation as

$$
\begin{aligned}
4 a^{2}+4 a & =b^{2}+b \\
4 a^{2}+4 a+1 & =b^{2}+b+1 \\
(2 a+1)^{2} & =b^{2}+b+1
\end{aligned}
$$

Since $b^{2}<b^{2}+b+1<b^{2}+2 b+1=(b+1)^{2}$, we see that $b^{2}+b+1$ cannot be a perfect square.
17. If $|x| \geq 0$, then

$$
x^{2}+A x+B>0
$$

and

$$
x^{2}+C x+D>0 .
$$

It follows that

$$
x^{2}+\frac{A+C}{2} x+\frac{B+D}{2} x=\frac{\left(x^{2}+A x+B\right)+\left(x^{2}+C x+D\right)}{2}>0 .
$$

18. Let us use the formula for the x-coordinate of a vertex of a parabola: $-\frac{b}{2 a}=\frac{1}{4}$. Solving this equation gives $-\frac{a}{2}=b$. Then $-\frac{9}{8}=y\left(\frac{1}{4}\right)=\frac{a}{16}+\frac{b}{4}+c=-\frac{a}{16}+c$, so $c=\frac{a-18}{16}$. This means that $\frac{9 a-18}{16}=a+b+c \in Z$. Since $\frac{9 a-18}{16}>-2$, the minimum value of $a>0$ is when $\frac{9 a-18}{16}=-1$, thus $a=\frac{2}{9}$.
