Curve Sketching

Example. $f(x)=\frac{2 x^{2}}{x^{2}-1}$
A. Domain. $f(x)$ is undefined when $x^{2}-1=0 \Leftrightarrow(x-1)(x+1)=0 \Leftrightarrow x=1,-1$. Thus Domain $(f)=(-\infty,-1) \cup(-1,1) \cup(1,+\infty)$.
B. Intercepts. y-intercept: $y(0)=0$.
x-intercepts: $f(x)=0 \Leftrightarrow \frac{2 x^{2}}{x^{2}-1}=0 \Leftrightarrow x=0$.
Thus $(0,0)$ is the only intercept.
C. Symmetry. $\frac{2(-x)^{2}}{(-x)^{2}-1}=\frac{2 x^{2}}{x^{2}-1}=0$
i.e. $f(-x)=f(x)$, i.e. $f(x)$ is even, therefore the graph is symmetric about the y-axis.
D. Asymptotes.
horizontal: $\lim _{x \rightarrow+\infty} \frac{2 x^{2}}{x^{2}-1}=\lim _{x \rightarrow+\infty} \frac{2}{1-\frac{1}{x^{2}}}=2 \quad \Rightarrow y=2$ is a horizontal asymptote.

$$
\lim _{x \rightarrow-\infty} \frac{2 x^{2}}{x^{2}-1}=\lim _{x \rightarrow-\infty} \frac{2^{\overline{x^{2}}}}{1-\frac{1}{x^{2}}}=2 \Rightarrow y=2 \text { is a horizontal asymptote. }
$$

vertical: $\lim _{x \rightarrow 1^{+}} \frac{2 x^{2}}{x^{2}-1}\left(=\frac{2}{+0}\right)=+\infty$

$$
\begin{aligned}
& \lim _{x \rightarrow 1^{-}} \frac{2 x^{2}}{x^{2}-1}\left(=\frac{2}{-0}\right)=-\infty \\
& \lim _{x \rightarrow-1^{+}} \frac{2 x^{2}}{x^{2}-1}\left(=\frac{2}{-0}\right)=-\infty \\
& \lim _{x \rightarrow-1^{-}} \frac{2 x^{2}}{x^{2}-1}\left(=\frac{2}{+0}\right)=+\infty
\end{aligned} \Rightarrow x=1 \text { and } x=-1 \text { are vertical asymptotes. }
$$

E. Increase / decrease.
$f^{\prime}(x)=\frac{4 x\left(x^{2}-1\right)-2 x^{2} \cdot 2 x}{\left(x^{2}-1\right)^{2}}=\frac{-4 x}{\left(x^{2}-1\right)^{2}}$.
since $\left(x^{2}-1\right)^{2}>0$ for $x \neq \pm 1$,
$f^{\prime}(x)>0$ when $x<0 \Rightarrow f(x)$ is increasing on $(-\infty,-1)$ and on $(-1,0)$.
$f^{\prime}(x)<0$ when $x>0 \Rightarrow f(x)$ is decreasing on $(0,1)$ and on $(1,+\infty)$.
F. Max / min.
$f^{\prime}(x)=0 \Rightarrow \frac{2 x^{2}}{x^{2}-1}=0 \Rightarrow x=0$.
At $0, f^{\prime}(x)$ changes from + to - , so 0 is a local maximum.
$f^{\prime}(x)$ does not exist when $x^{2}-1=0 \Rightarrow x= \pm 1$, but 1 and -1 are not in the domain of $f(x)$, so they are not critical numbers.
G. Concavity and inflection points.
$f^{\prime \prime}(x)=\frac{-4\left(x^{2}-1\right)^{2}-(-4 x) 2\left(x^{2}-1\right)}{\left(x^{2}-1\right)^{4}}=\frac{\left(x^{2}-1\right)\left[-4\left(x^{2}-1\right)+4 x \cdot 2 \cdot 2 x\right]}{\left(x^{2}-1\right)^{4}}=$
$=\frac{-4 x^{2}+4+16 x^{2}}{\left(x^{2}-1\right)^{3}}=\frac{12 x^{2}+4}{\left(x^{2}-1\right)^{3}}$.
since $12 x^{2}+4>0$ for all x,
$f^{\prime \prime}(x)>0$ when $x^{2}-1>0 \Rightarrow f(x)$ is CU on $(-\infty,-1)$ and on $(1,+\infty)$.
$f^{\prime \prime}(x)<0$ when $x^{2}-1<0 \Rightarrow f(x)$ is CD on $(-1,1)$.
$f(x)$ changes the direction of concavity at ± 1, but 1 and -1 are not in the domain of $f(x)$, so there are no inflection points.
H. Graph.
first sketch the asymptotes (also notice that when x is large or large negative, $f(x)=\frac{2 x^{2}}{x^{2}-1}=\frac{2}{1-\frac{1}{x^{2}}}$ is slightly bigger than 2 because $1-\frac{1}{x^{2}}$ is slightly smaller than 1, so the graph approaches the horizontal asymptote from above), plot the intercepts (only $(0,0)$ in our case), maxima $((0,0)$ again), minima (none), and inflection points (none), and indicate the intevals of increase, decrease, and concavity:

now sketch the graph:

