MATH 150

Test 1

October 5, 2006

Name:_____

- No books or calculators are allowed.
- Please show all your work that you want to be considered in an organized fashion. Erase or cross out scratch work that you do not want to be considered.
- Please simplify your answers.
- Partial credit will be awarded for partially correct work or reasoning.

- 1. For the function f(x) whose graph is given, state the value or that it does not exist (DNE).
 - $\lim_{x \to 0^{-}} f(x) \qquad \lim_{x \to 0^{+}} f(x) \qquad \lim_{x \to 0} f(x) \qquad f(0)$
 - $\lim_{x \to 1^{-}} f(x) \qquad \lim_{x \to 1^{+}} f(x) \qquad \lim_{x \to 1} f(x) \qquad f(1)$
 - $\lim_{x \to 2^{-}} f(x) \qquad \lim_{x \to 2^{+}} f(x) \qquad \lim_{x \to 2} f(x) \qquad f(2)$

2. Analyze the continuity (or discontinuity) of the above graph at x = 0, x = 1, and x = 2. Explain in terms of limits, that is, by making clear reference to the definition of continuity. 3. Evaluate the following limits.

(a)
$$\lim_{t \to 1} (t^3 - 2t^2 + 3t - 4)$$

(b)
$$\lim_{x \to 3} \frac{x^2 - 4x + 3}{x - 3}$$

(c)
$$\lim_{x \to \infty} \frac{4x^4 - x - 5}{3x^4 + 2}$$

4. Find the derivative of each of the following functions.

(a)
$$f(x) = x^5 \sqrt{x}$$

(b)
$$g(t) = \sin(t^2)$$

(c)
$$y = \frac{x^2 + x - 4}{3x + 2}$$

5. Use the definition of the derivative to find f'(x) for the function $f(x) = x^2 - 3x$.

6. Find an equation of the tangent line to the curve $y = \cos(\pi x) - x^2$ at x = 1.

7. Find the exact x-values of the points at which the tangent lines to the graph of $f(x) = \frac{x^3}{3} - x^2 - 4x + 57$ are horizontal.

(Clarification: for example, $\sqrt{2}$ and π are exact values, while 1.414 and 3.14 are approximations.)

8. If f(0) = 1, f'(0) = -2, g(0) = 3, and g'(0) = -4, find the derivative of the product f(x)g(x) at x = 0.

9. A ball is sent rolling down an inclined plane. The graph of its distance from the top is given below.

(a) Find the average velocity of the ball between 0 seconds and 5 seconds.

(b) Estimate the instantaneous velocity of the ball at 4 seconds. Explain why you think your estimate is correct.

10. Show that the equation $x^5 + 3x - 1 = 0$ has at least one real root in the interval (-1, 1).

11. Find the value of c for which the function

$$f(x) = \begin{cases} 2x+4 & \text{if } x \le c \\ 7-x & \text{if } x > c \end{cases}$$

is continuous everywhere.

For Extra Credit: Let $f(x) = \frac{x^2}{8}$. Note that $\lim_{x \to 4} f(x) = 2$. Find a number δ such that |f(x) - 2| < 0.5 whenever $|x - 4| < \delta$. (You may sketch the graph of f(x) and use it to determine δ .)

Problem	Value	Score
1	12	
2	6	
3	9	
4	12	
5	10	
6	10	
7	10	
8	5	
9	10	
10	8	
11	8	
E.C.	5	
Total	100	

Please do not write anything on this page

	Your scores so far	Out of
Pre-reading		20
WeBWorK		36
Quizzes		10
Labs		30
Test 1		100
Total		196

This page may be used as scratch paper