MATH 150

Test 1

October 5, 2006

Name:

- No books or calculators are allowed.
- Please show all your work that you want to be considered in an organized fashion. Erase or cross out scratch work that you do not want to be considered.
- Please simplify your answers.
- Partial credit will be awarded for partially correct work or reasoning.

1. For the function $f(x)$ whose graph is given, state the value or that it does not exist (DNE).

$\lim _{x \rightarrow 0^{-}} f(x)$	$\lim _{x \rightarrow 0} f(x)$	$f(0)$
$\lim _{x \rightarrow 1^{-}} f(x)$	$\lim _{x \rightarrow 1^{+}} f(x)$	$\lim _{x \rightarrow 1} f(x)$
$\lim _{x \rightarrow 2^{-}} f(x)$	$\lim _{x \rightarrow 2^{+}} f(x)$	$\lim _{x \rightarrow 2} f(x)$

2. Analyze the continuity (or discontinuity) of the above graph at $x=0, x=1$, and $x=2$. Explain in terms of limits, that is, by making clear reference to the definition of continuity.
3. Evaluate the following limits.
(a) $\lim _{t \rightarrow 1}\left(t^{3}-2 t^{2}+3 t-4\right)$
(b) $\lim _{x \rightarrow 3} \frac{x^{2}-4 x+3}{x-3}$
(c) $\lim _{x \rightarrow \infty} \frac{4 x^{4}-x-5}{3 x^{4}+2}$
4. Find the derivative of each of the following functions.
(a) $f(x)=x^{5} \sqrt{x}$
(b) $g(t)=\sin \left(t^{2}\right)$
(c) $y=\frac{x^{2}+x-4}{3 x+2}$
5. Use the definition of the derivative to find $f^{\prime}(x)$ for the function $f(x)=x^{2}-3 x$.
6. Find an equation of the tangent line to the curve $y=\cos (\pi x)-x^{2}$ at $x=1$.
7. Find the exact x-values of the points at which the tangent lines to the graph of $f(x)=$ $\frac{x^{3}}{3}-x^{2}-4 x+57$ are horizontal.
(Clarification: for example, $\sqrt{2}$ and π are exact values, while 1.414 and 3.14 are approximations.)
8. If $f(0)=1, f^{\prime}(0)=-2, g(0)=3$, and $g^{\prime}(0)=-4$, find the derivative of the product $f(x) g(x)$ at $x=0$.
9. A ball is sent rolling down an inclined plane. The graph of its distance from the top is given below.

(a) Find the average velocity of the ball between 0 seconds and 5 seconds.
(b) Estimate the instantaneous velocity of the ball at 4 seconds. Explain why you think your estimate is correct.
10. Show that the equation $x^{5}+3 x-1=0$ has at least one real root in the interval $(-1,1)$.
11. Find the value of c for which the function

$$
f(x)= \begin{cases}2 x+4 & \text { if } x \leq c \\ 7-x & \text { if } x>c\end{cases}
$$

is continuous everywhere.

For Extra Credit: Let $f(x)=\frac{x^{2}}{8}$. Note that $\lim _{x \rightarrow 4} f(x)=2$. Find a number δ such that $|f(x)-2|<0.5$ whenever $|x-4|<\delta$. (You may sketch the graph of $f(x)$ and use it to determine δ.

Please do not write anything on this page

Problem	Value	Score
1	12	
2	6	
3	9	
4	12	
5	10	
6	10	
7	10	
8	5	
9	10	
10	8	
11	8	
E.C.	5	
Total	100	

	Your scores so far	Out of
Pre-reading		20
WeBWorK		36
Quizzes		10
Labs		30
Test 1		100
Total		196

This page may be used as scratch paper

