Math 151

Solutions to selected homework problems

Section 1.1, Problem 8:

Let a, b, c be integers such that $a+b+c=0$. Show that if n is an integer which is a divisor of two of the three integers, then it is also a divisor of the third.

Solution:

Let n be a divisor of two of the three integers a, b, c. Without loss of generality we can assume that $n \mid a$ and $n \mid b$. Therefore $a=n x$ and $b=n y$ for some $x, y \in \mathbb{Z}$. Then $c=-a-b=-n x-n y=n(-x-y)$. Since $-x-y \in \mathbb{Z}, n \mid c$.

Section 1.1, Problem 11:

Show that if $a>0$, then $(a b, a c)=a(b, c)$.

Solution:

Let $d=(b, c)$. We will show that $a d=(a b, a c)$.
(i) Since $d \mid b$ and $d \mid c, b=d x$ and $c=d y$ for some $x, y \in \mathbb{Z}$. Then $a b=a d x$ and $a c=a d y$, thus $a d \mid a b$ and $a d \mid a c$.
(ii) Let $z \mid a b$ and $z \mid a c$. Then $a b=z k$ and $a c=z l$ for some $k, l \in \mathbb{Z}$.

Since $d=(b, c), d=m b+n c$ for some $m, n \in \mathbb{Z}$.
Then $a d=a m b+a n c=a b m+a c n=z k m+z l n=z\left(k m_{l} n\right)$. Therefore $z \mid a d$.
(iii) We have $a d>0$ because $a>0$ and $d>0$.

