Math 151

Solutions to selected homework problems

Section 1.2, Problem 8:

Let a, b be positive integers, and let $d=(a, b)$. Since $d \mid a$ and $d \mid b$, there exist integers h, k such that $a=d h$ and $b=d k$. Show that $(h, k)=1$.

Solution:

Since $d=(a, b), d=m a+n b$ for some $m, n \in \mathbb{Z}$. Then $d=m d h+n d k$, so $1=m h+n k$. Therefore (by Proposition 1.2.2) $(h, k)=1$.

Section 1.2, Problem 10:

Show that $a \mathbb{Z} \cap b \mathbb{Z}=[a, b] \mathbb{Z}$.

Solution:

Let $x \in a \mathbb{Z} \cap b \mathbb{Z}$. Then $x \in a \mathbb{Z}$ and $x \in b \mathbb{Z}$, i.e. x is a multiple of both a and b. By definition of lcm, x is a multiple of $[a, b]$. Therefore $x \in[a, b] \mathbb{Z}$. Thus we have $a \mathbb{Z} \cap b \mathbb{Z} \subseteq[a, b] \mathbb{Z}$.

Now let $x \in[a, b] \mathbb{Z}$. Then x is a multiple of $[a, b]$. It follows that x is a multiple of both a and b, i.e. $x \in a \mathbb{Z}$ and $x \in b \mathbb{Z}$. Therefore $x \in a \mathbb{Z} \cap b \mathbb{Z}$. Thus we have $[a, b] \mathbb{Z} \subseteq a \mathbb{Z} \cap b \mathbb{Z}$.

Since $a \mathbb{Z} \cap b \mathbb{Z} \subseteq[a, b] \mathbb{Z}$ and $[a, b] \mathbb{Z} \subseteq a \mathbb{Z} \cap b \mathbb{Z}$, we have $a \mathbb{Z} \cap b \mathbb{Z}=[a, b] \mathbb{Z}$.

Section 1.2, Problem 24:

Show that $\log 2 / \log 3$ is not a rational number.

Solution:

We will prove this statement by contradiction. Suppose $\log 2 / \log 3$ is rational. Then $\log 2 / \log 3=m / n$ for some $m, n \in \mathbb{Z}, n>0$. Since $\log 2 / \log 3>0$, we also have $m>0$. Using the formula $\log _{a} b / \log _{a} c=\log _{c} b$, we have $\log _{3} 2=m / n$. It follows that $3^{m / n}=2$, or $3^{m}=2^{n}$. Since $m, n>0,3^{m}=2^{n}>1$. Since both 2 and 3 are prime, this contradicts the unique prime factorization theorem.

Note: the idea of this proof is similar to that of the proof that $\sqrt{2}$ is irrational (on page xix in our book). Namely, we assume the number is rational, write it as a quotient of two positive integers, and then rewrite the equation so that only integer numbers are involved. Finally, we use some properties of integer numbers to get a contradiction (another property we could use is that 2^{n} is even while 3^{m} is odd).

Section 1.3, Problem 14:

Find the units digit of $3^{29}+11^{12}+15$.

Solution:

Note: There are many different ways to do this problem. Below is one.
$3^{29}+11^{12}+15 \equiv 3^{28} \cdot 3+1^{12}+5 \equiv\left(3^{4}\right)^{7} \cdot 3+1+5 \equiv 81^{7} \cdot 3+6 \equiv 1^{7} \cdot 3+6 \equiv 3+6 \equiv 9(\bmod 10)$, thus the units digit is 9 .

Section 1.3, Problem 28:

Prove that there exist infinitely many prime numbers of the form $4 m+3$ (where m is an integer).

Solution:

We will prove this statement by contradiction. Suppose there are finitely many prime numbers of the form $4 m+3$, say, $p_{0}=3, p_{1}, p_{2}, \ldots, p_{n}$. Consider the number $N=$ $4 p_{1} p_{2} \ldots p_{n} .+3$. It is of the form $4 m+3$. If it is prime, we have another prime number and that contradicts to our assumption. It if is composite, it must have a prime factor. Since it is odd, 2 is not its factor. Further, it is not possible that all of its prime factors are of the form $4 m+1$ because a product of numbers of this form is also of this form $\left(\left(4 m_{1}+1\right)\left(4 m_{2}+1\right)=4\left(4 m_{1} m_{2}+m_{1}+m_{2}\right)+1\right)$. Thus it must have a prime factor of the form $4 m+3$, i.e. p_{i} for some $1 \leq i \leq n$. Then $p_{i} \mid 3$. Since $p_{i}>3$, we again get a contradiction.

