Math 151

Solutions to selected homework problems

Section 1.4, Problem 7:

Prove that the associative and commutative laws hold for addition and multiplication of congruence classes, as defined in Proposition 1.4.2.

Solution:

Addition: we know that associativity and commativity hold for integer addition. Thus we have the following.
Associativity: $\left([a]_{n}+[b]_{n}\right)+[c]_{n}=[a+b]_{n}+[c]_{n}=[(a+b)+c]_{n}=[a+(b+c)]_{n}=$ $[a]_{n}+[b+c]_{n}=[a]_{n}+\left([b]_{n}+[c]_{n}\right)$.

Commutativity: $[a]_{n}+[b]_{n}=[a+b]_{n}=[b+a]_{n}=[b]_{n}+[a]_{n}$.
Similarly for multiplication.

Section 1.4, Problem 24:

Show that if p is a prime number, then the congruence $x^{2} \equiv 1(\bmod p)$ has only the solutions $x \equiv 1$ and $x \equiv-1$.

Solution:

The congruence $x^{2} \equiv 1(\bmod p)$ is equivalent to $x^{2}-1 \equiv 0(\bmod p)$.
Factor $x^{2}-1:(x-1)(x+1) \equiv 0(\bmod p)$.
Therefore $p \mid(x-1)(x+1)$. Since p is prime, by Euclid's Lemma $p \mid(x-1)$ or $p \mid(x+1)$.
If $p \mid(x-1)$, then $x \equiv 1(\bmod p)$.
If $p \mid(x+1)$, then $x \equiv-1(\bmod p)$.

Section 1.4, Problem 27:

Prove Wilson's theorem, which states that if p is a prime number, then $(p-1)!\equiv-1(\bmod p)$.

Hint: $(p-1)$! is the product of all elements of \mathbb{Z}_{p}^{*}. Pair each element with ins inverse, and use Exercise 24. For three special cases see Exercise 11 in Section 1.3.

Solution:

Since p is prime, every positive integer less than p is relatively prime to p. Therefore every element of \mathbb{Z}_{p}^{*} has an inverse in \mathbb{Z}_{p}. Let $[y]_{p}$ be the inverse of $[x]_{p}$. Then $[x]_{p}[y]_{p}=[1]_{p}$ implies that $[x y]_{p}=[1]_{p}$, or $x y \equiv 1(\bmod p)$. By exercise 24 , the only solutions of $x^{2} \equiv 1(\bmod p)$ are $x \equiv 1$ and $x \equiv-1$, thus only the elements [1] and $[-1]=[p-1]$ are inverses of themselves, and if $x \not \equiv 1$ or -1 , then the inverse of $[x]$ is not equal to $[x]$. Therefore all elements of \mathbb{Z}_{p}^{*} except for $[1]$ and $[p-1]$ can be divided into $\frac{p-3}{2}$ pairs of the form $\left([x],[x]^{-1}\right)$. The product of the two classes in each pair is $[1]$, thus $(p-1)!=1 \cdot 2 \cdot 3 \cdot \ldots \cdot(p-1) \equiv 1 \cdot \underbrace{1 \cdot \ldots \cdot 1}_{\frac{p-3}{2}} \cdot(p-1) \equiv-1(\bmod p)$.

Section 2.1, Problem 9(b):

Show that each of the following formulas yields a well-defined function.
$g: \mathbb{Z}_{8} \rightarrow \mathbb{Z}_{12}$ defined by $g\left([x]_{8}\right)=[6 x]_{12}$.

Solution:

If $\left[x_{1}\right]_{8}=\left[x_{2}\right]_{8}$, then $x_{1} \equiv x_{2}(\bmod 8)$, so $x_{1}-x_{2}=8 k$ for some $k \in \mathbb{Z}$. Then $6 x_{1}-6 x_{2}=48 k=12(4 k)$. It follows that $6 x_{1} \equiv 6 x_{2}(\bmod 12)$, i.e. $\left[6 x_{1}\right]_{12}=\left[6 x_{2}\right]_{12}$. Thus g is well-defined.

Section 2.1, Problem 10(b):

In each of the following cases, give an example to show that the formula does not define a function.
$g: \mathbb{Z}_{2} \rightarrow \mathbb{Z}_{5}$ defined by $g\left([x]_{2}\right)=[x]_{5}$.

Solution:

Since $[0]_{2}=[2]_{2}$, we must have $g\left([0]_{2}\right)=g\left([2]_{2}\right)$. However, $g\left([0]_{2}\right)=[0]_{5} \neq[2]_{5}=g\left([2]_{2}\right)$. Thus g is not well-defined.

