Math 151

Solutions to selected homework problems

Section 1.4, Problem 7:

Prove that the associative and commutative laws hold for addition and multiplication of congruence classes, as defined in Proposition 1.4.2.

Solution:

Addition: we know that associativity and commativity hold for integer addition. Thus we have the following.

Associativity: $([a]_n + [b]_n) + [c]_n = [a + b]_n + [c]_n = [(a + b) + c]_n = [a + (b + c)]_n = [a]_n + [b + c]_n = [a]_n + ([b]_n + [c]_n).$

Commutativity: $[a]_n + [b]_n = [a+b]_n = [b+a]_n = [b]_n + [a]_n$.

Similarly for multiplication.

Section 1.4, Problem 24:

Show that if p is a prime number, then the congruence $x^2 \equiv 1 \pmod{p}$ has only the solutions $x \equiv 1$ and $x \equiv -1$.

Solution:

The congruence $x^2 \equiv 1 \pmod{p}$ is equivalent to $x^2 - 1 \equiv 0 \pmod{p}$.

Factor $x^2 - 1$: $(x - 1)(x + 1) \equiv 0 \pmod{p}$.

Therefore p|(x-1)(x+1). Since p is prime, by Euclid's Lemma p|(x-1) or p|(x+1).

If p|(x-1), then $x \equiv 1 \pmod{p}$.

If p|(x+1), then $x \equiv -1 \pmod{p}$.

Section 1.4, Problem 27:

Prove Wilson's theorem, which states that if p is a prime number, then $(p-1)! \equiv -1 \pmod{p}$.

Hint: (p-1)! is the product of all elements of \mathbb{Z}_p^* . Pair each element with ins inverse, and use Exercise 24. For three special cases see Exercise 11 in Section 1.3.

Solution:

Since p is prime, every positive integer less than p is relatively prime to p. Therefore every element of \mathbb{Z}_p^* has an inverse in \mathbb{Z}_p . Let $[y]_p$ be the inverse of $[x]_p$. Then $[x]_p[y]_p = [1]_p$ implies that $[xy]_p = [1]_p$, or $xy \equiv 1 \pmod{p}$. By exercise 24, the only solutions of $x^2 \equiv 1 \pmod{p}$ are $x \equiv 1$ and $x \equiv -1$, thus only the elements [1] and [-1] = [p-1] are inverses of themselves, and if $x \not\equiv 1$ or -1, then the inverse of [x] is not equal to [x]. Therefore all elements of \mathbb{Z}_p^* except for [1] and [p-1] can be divided into $\frac{p-3}{2}$ pairs of the form $([x], [x]^{-1})$. The product of the two classes in each pair is [1], thus $(p-1)! = 1 \cdot 2 \cdot 3 \cdot \ldots \cdot (p-1) \equiv 1 \cdot \underbrace{1 \cdot \ldots \cdot 1}_{p-3} \cdot (p-1) \equiv -1 \pmod{p}$.

Section 2.1, Problem 9(b):

Show that each of the following formulas yields a well-defined function.

 $g: \mathbb{Z}_8 \to \mathbb{Z}_{12}$ defined by $g([x]_8) = [6x]_{12}$.

Solution:

If $[x_1]_8 = [x_2]_8$, then $x_1 \equiv x_2 \pmod{8}$, so $x_1 - x_2 = 8k$ for some $k \in \mathbb{Z}$. Then $6x_1 - 6x_2 = 48k = 12(4k)$. It follows that $6x_1 \equiv 6x_2 \pmod{12}$, i.e. $[6x_1]_{12} = [6x_2]_{12}$. Thus g is well-defined.

Section 2.1, Problem 10(b):

In each of the following cases, give an example to show that the formula does not define a function.

 $g: \mathbb{Z}_2 \to \mathbb{Z}_5$ defined by $g([x]_2) = [x]_5$.

Solution:

Since $[0]_2 = [2]_2$, we must have $g([0]_2) = g([2]_2)$. However, $g([0]_2) = [0]_5 \neq [2]_5 = g([2]_2)$. Thus g is not well-defined.